波能装置与防波堤集成系统能量转换的试验研究

周斌珍, 黄煦, 林楚森, 张恒铭, 彭佳欣, 聂祖立

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 185-190.

PDF(2266 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2266 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 185-190. DOI: 10.19912/j.0254-0096.tynxb.2023-0143

波能装置与防波堤集成系统能量转换的试验研究

  • 周斌珍1, 黄煦1, 林楚森1, 张恒铭2, 彭佳欣1, 聂祖立1
作者信息 +

EXPERIMENTAL STUDY ON ENERGY CONVERSION OF INTEGRATED SYSTEM WITH WAVE ENERGY CONVERTER AND BREAKWATER

  • Zhou Binzhen1, Huang Xu1, Lin Chusen1, Zhang Hengming2, Peng Jiaxin1, Nie Zuli1
Author information +
文章历史 +

摘要

采用试验的方法建立物理模型,对方箱形波能装置-防波堤集成系统的发电与防波性能以及防波堤运动响应展开研究,并与单独的波能装置和浮式防波堤进行对比,分析入射波高对集成系统的发电性能与防波性能的影响。结果表明:集成系统的发电性能优于单独的波能装置,其防波性能优于单独的防波堤;集成系统中防波堤的纵荡和纵摇运动幅值小于单独防波堤,但垂荡运动有所增大;当入射波高增加,集成系统的发电性能提高但防波性能下降,防波堤的运动响应也随之增大。

Abstract

The power generation and wave attenuation performance and the motion response of the box-type wave energy converter- breakwater integrated system are studied by physical model test, and compared with those of the isolated wave energy converter and the single floating breakwater. The impacts of the incident wave height on the power generation and wave attenuation performance of the integrated system are analyzed. Results show that the power generation performance of the integrated system is better than that of the isolated WEC float, and the wave attenuation performance is better than that of the single breakwater. The surge and pitch motion amplitudes of the breakwater for integrated system are smaller than those of single breakwater, but the heave motion response is larger. When the incident wave height increases, the power generation performance of the integrated system is improved while the wave attenuation performance decreases, and the motion response of the breakwater increases.

关键词

波浪能转换 / 浮式防波堤 / 发电性能 / 防波性能 / 多自由度运动

Key words

wave energy conversion / floating breakwater / wave energy extraction / wave attenuation / multi-degree motion

引用本文

导出引用
周斌珍, 黄煦, 林楚森, 张恒铭, 彭佳欣, 聂祖立. 波能装置与防波堤集成系统能量转换的试验研究[J]. 太阳能学报. 2024, 45(5): 185-190 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0143
Zhou Binzhen, Huang Xu, Lin Chusen, Zhang Hengming, Peng Jiaxin, Nie Zuli. EXPERIMENTAL STUDY ON ENERGY CONVERSION OF INTEGRATED SYSTEM WITH WAVE ENERGY CONVERTER AND BREAKWATER[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 185-190 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0143
中图分类号: P742   

参考文献

[1] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.
LU Q, SHI H D.Progress and future trend of wave energy technology in China[J]. Coastal engineering, 2022, 41(1): 1-12.
[2] 姜楠, 刘聪, 张萧, 等. 波浪能俘获装置的设计和研究[J]. 太阳能学报, 2022, 43(8): 447-451.
JIANG N, LIU C, ZHANG X, et al.Design and research of wave energy capture device[J]. Acta energiae solaris sinica, 2022, 43(8): 447-451.
[3] 张丽珍, 羊晓晟, 王世明, 等. 海洋波浪能发电装置的研究现状与发展前景[J]. 湖北农业科学, 2011, 50(1): 161-164.
ZHANG L Z, YANG X S, WANG S M, et al.Research status and developing prospect of ocean wave power generation device[J]. Hubei agricultural sciences, 2011, 50(1): 161-164.
[4] 彭伟, 张继生, 范亚宁, 等. 结合防波堤的振荡摇摆式波浪能装置试验研究[J]. 太阳能学报, 2021, 42(2): 295-301.
PENG W, ZHANG J S, FAN Y N, et al.Experimental study on oscillating flap-type wave energy device integrated with breakwater[J]. Acta energiae solaris sinica, 2021, 42(2): 295-301.
[5] ZHAO X L, NING D Z, ZOU Q P, et al.Hybrid floating breakwater-WEC system: a review[J]. Ocean engineering, 2019, 186: 106126.
[6] CHEN Q, ZANG J, BIRCHALL J, et al.On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater[J]. Renewable energy, 2020, 146: 414-425.
[7] NING D Z, ZHAO X L, GÖTEMAN M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable energy, 2016, 95: 531-541.
[8] ZHAO X L, NING D Z, ZHANG C W, et al.Hydrodynamic investigation of an oscillating buoy wave energy converter integrated into a pile-restrained floating breakwater[J]. Energies, 2017, 10(5): 712.
[9] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 257: 113996.
[10] ZHAO X L, NING D Z.Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226-233.
[11] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 259: 114212.
[12] GUO B M, WANG R Q, NING D Z, et al.Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons[J]. Energy, 2020, 209: 118463.
[13] ZHAO X L, XUE R, GENG J, et al.Analytical investigation on the hydrodynamic performance of a multi-pontoon breakwater-WEC system[J]. Ocean engineering, 2021, 220: 108394.
[14] 何则辰, 张崇伟, 宁德志, 等. 振荡浮子式波能转换装置阵列的物理模型水池试验[J]. 科技导报, 2021, 39(6): 47-52.
HE Z C, ZHANG C W, NING D Z, et al.Experimental study of an array of oscillating buoy wave energy converters in wave tank[J]. Science & technology review, 2021, 39(6): 47-52.
[15] NING D Z, ZHAO X L, CHEN L, et al.Hydrodynamic performance of an array of wave energy converters integrated with a pontoon-type breakwater[J]. Energies, 2018, 11(3): 685.
[16] ZHANG H M, ZHOU B Z, ZANG J, et al.Optimization of a three-dimensional hybrid system combining a floating breakwater and a wave energy converter array[J]. Energy conversion and management, 2021, 247: 114717.
[17] GODA Y, SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C]//Coastal engineering 1976. Honolulu, Hawaii, USA, 1977.
[18] LEE H, POGULURI S, BAE Y.Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain[J]. Energies, 2018, 11(2): 406.

基金

国家自然科学基金(52071096; 52222109); 广东省基础与应用研究基金(2022B1515020036); 广州市基础与应用研究基金(202201010055)

PDF(2266 KB)

Accesses

Citation

Detail

段落导航
相关文章

/