基于多因子的太阳辐照度预测方法研究进展

兰昆, 吴战波, 赵泽妮, 贾凌云, 杨柳, 云斯宁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 593-601.

PDF(2000 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2000 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 593-601. DOI: 10.19912/j.0254-0096.tynxb.2023-0148

基于多因子的太阳辐照度预测方法研究进展

  • 兰昆1, 吴战波2, 赵泽妮2, 贾凌云2, 杨柳3, 云斯宁2,4
作者信息 +

ADVANCE IN PREDICTION METHODS FOR SOLAR IRRADIANCE BASED ON MULTIPLE-FACTORS

  • Lan Kun1, Wu Zhanbo2, Zhao Zeni2, Jia Lingyun2, Yang Liu3, Yun Sining2,4
Author information +
文章历史 +

摘要

针对太阳辐照度的不稳定性和间歇性出力问题,总结并分析太阳辐照度预测领域当前的研究现状。从预测方法、预测流程、输入参数、评价指标等方面出发,对近年来不同地区、不同时间尺度下的太阳辐照度的预测进行详细的对比和分析。研究发现,基于时间序列、机器学习及混合系统的预测方法是当前主流的太阳辐照度预测方法。

Abstract

Considering the instability and intermittent output of solar irradiance, the current research status of solar irradiance prediction was summarized and analyzed in this review paper. From the perspectives of prediction methods, fprediction procedures, input parameters, and evaluation metrics, this work conducts a detailed comparison and analysis of solar irradiance predictions across various regions and time scales. It has been found that the prediction methods based on time series, machine learning and hybrid system are the popular methods in the field of solar irradiance prediction.

关键词

太阳辐照度 / 预测 / 机器学习 / 时间序列 / 确定性预测

Key words

solar irradiance / prediction / machine learning / time series / deterministic prediction

引用本文

导出引用
兰昆, 吴战波, 赵泽妮, 贾凌云, 杨柳, 云斯宁. 基于多因子的太阳辐照度预测方法研究进展[J]. 太阳能学报. 2024, 45(5): 593-601 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0148
Lan Kun, Wu Zhanbo, Zhao Zeni, Jia Lingyun, Yang Liu, Yun Sining. ADVANCE IN PREDICTION METHODS FOR SOLAR IRRADIANCE BASED ON MULTIPLE-FACTORS[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 593-601 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0148
中图分类号: TQ174   

参考文献

[1] ESKANDER S M S U, FANKHAUSER S. Reduction in greenhouse gas emissions from national climate legislation[J]. Nature climate change, 2020, 10: 750-756.
[2] GERNAAT D E H J, DE BOER H S, DAIOGLOU V, et al. Climate change impacts on renewable energy supply[J]. Nature climate change, 2021, 11: 119-125.
[3] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[4] 赵泽妮, 云斯宁, 贾凌云, 等. 基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[5] ZHANG Y H, REN J, PU Y R, et al.Solar energy potential assessment: a framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable energy, 2020, 149: 577-586.
[6] YU S W, ZHAO Z W, ZHAO J J, et al.Research progress in novel in-situ integrative photovoltaic-storage tandem cells[J]. Journal of inorganic materials, 2019: 342.
[7] GHOSH A.Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: a comprehensive review[J]. Journal of cleaner production, 2020, 276: 123343.
[8] LEE J, SHEPLEY M M.Benefits of solar photovoltaic systems for low-income families in social housing of Korea: renewable energy applications as solutions to energy poverty[J]. Journal of building engineering, 2020, 28: 101016.
[9] 胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6): 256-263.
HU B, ZHAN Z Q, CHEN J, et al.Prediction research on short-term photovoltaic output based on PCA-GA-Elman[J]. Acta energiae solaris sinica, 2020, 41(6): 256-263.
[10] BOYLE C F H, HAAS J, KERN J D. Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems[J]. Renewable energy, 2021, 164: 1230-1243.
[11] PERERA A T D, NIK V M, CHEN D L, et al. Quantifying the impacts of climate change and extreme climate events on energy systems[J]. Nature energy, 2020, 5: 150-159.
[12] ORLOV A, SILLMANN J, VIGO I.Better seasonal forecasts for the renewable energy industry[J]. Nature energy, 2020, 5: 108-110.
[13] GORDON J M, REDDY T A.Time series analysis of daily horizontal solar radiation[J]. Solar energy, 1988, 41(3): 215-226.
[14] BELMAHDI B, LOUZAZNI M, EL BOUARDI A.One month-ahead forecasting of mean daily global solar radiation using time series models[J]. Optik, 2020, 219: 165207.
[15] ALSHARIF M, YOUNES M, KIM J.Time series ARIMA model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea[J]. Symmetry, 2019, 11(2): 240.
[16] KUMAR BARIK A, MALAKAR S, GOSWAMI S, et al.Analysis of GHI forecasting using seasonal ARIMA[C]//Data Management, Analytics and Innovation. Singapore: Springer, 2021: 55-69.
[17] SHADAB A, SAID S, AHMAD S.Box-Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study[J]. International journal of energy and water resources, 2019, 3(4): 305-318.
[18] BENMOUIZA K, CHEKNANE A.Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models[J]. Theoretical and applied climatology, 2016, 124(3): 945-958.
[19] SANSA I, BOUSSAADA Z, MAZIGH M, et al.Solar radiation prediction for a winter day using ARMA model[C]//2020 6th IEEE International Energy Conference (ENERGYCon). Gammarth, Tunisia, 2020: 326-330.
[20] JORDAN M I, MITCHELL T M.Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[21] MOHRI M, ROSTAMIZADEH A, TALWALKAR A.Foundations of machine learning[M]. Cambridge: MIT press, 2018.
[22] MCCULLOCH W S, PITTS W.A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics, 1943, 5(4): 115-133.
[23] KROSE B, SMAGT P V D. An introduction to neural networks[M]. Cambridge: MIT press, 2011.
[24] 张鸿皓, 杨国华, 郑豪丰, 等. 基于多维特征分析的双层协同太阳辐照度预测[J]. 太阳能学报, 2022, 43(8): 143-149.
ZHANG H H, YANG G H, ZHENG H F, et al.Prediction of bi-layer cooperative solar radiation intensity based on multi-feature analysis[J]. Acta energiae solaris sinica, 2022, 43(8): 143-149.
[25] WANG S X, ZHANG N, WU L, et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J]. Renewable energy, 2016, 94: 629-636.
[26] ESEYE A T, ZHANG J H, ZHENG D H, et al.Short-term wind power forecasting using a double-stage hierarchical hybrid GA-ANN approach[C]//2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). Beijing, China, 2017: 552-556.
[27] ELIZONDO D, HOOGENBOOM G, MCCLENDON R.Development of a neural network model to predict daily solar radiation[J]. Agricultural and forest meteorology, 1994, 71(1/2): 115-132.
[28] ANWAR K, DESHMUKH S.Assessment and mapping of solar energy potential using artificial neural network and GIS technology in the southern part of India[J]. International journal of renewable energy research, 2018, 8(2): 974-985.
[29] EL MGHOUCHI Y, CHHAM E, ZEMMOURI E, et al.Assessment of different combinations of meteorological parameters for predicting daily global solar radiation using artificial neural networks[J]. Building and environment, 2019, 149: 607-622.
[30] ALI JALLAL M, CHABAA S, ZEROUAL A.A new artificial multi-neural approach to estimate the hourly global solar radiation in a semi-arid climate site[J]. Theoretical and applied climatology, 2020, 139(3): 1261-1276.
[31] ZANG H X, CHENG L L, DING T, et al.Application of functional deep belief network for estimating daily global solar radiation: a case study in China[J]. Energy, 2020, 191: 116502.
[32] PANG Z H, NIU F X, O’NEILL Z. Solar radiation prediction using recurrent neural network and artificial neural network: a case study with comparisons[J]. Renewable energy, 2020, 156: 279-289.
[33] XIE J Y, GIRSHICK R, FARHADI A.Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. New York, NY, USA, 2016: 478-487.
[34] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[35] NOURANI V, ELKIRAN G, ABDULLAHI J, et al.Multi-region modeling of daily global solar radiation with artificial intelligence ensemble[J]. Natural resources research, 2019, 28(4): 1217-1238.
[36] VOYANT C, MUSELLI M, PAOLI C, et al.Hybrid methodology for hourly global radiation forecasting in Mediterranean area[J]. Renewable energy, 2013, 53: 1-11.
[37] LINARES-RODRIGUEZ A, RUIZ-ARIAS J A, POZO-VAZQUEZ D, et al. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images[J]. Energy, 2013, 61: 636-645.
[38] AYODELE T R, OGUNJUYIGBE A S O, AMEDU A, et al. Prediction of global solar irradiation using hybridized K-means and support vector regression algorithms[J]. Renewable energy focus, 2019, 29: 78-93.
[39] REZA PARSAEI M, MOLLASHAHI H, DARVISHAN A, et al.A new prediction model of solar radiation based on the neuro-fuzzy model[J]. International journal of ambient energy, 2020, 41(2): 189-197.
[40] GHIMIRE S, DEO R C, RAJ N, et al.Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction[J]. Renewable and sustainable energy reviews, 2019, 113: 109247.
[41] WU J, CHAN C K.Prediction of hourly solar radiation with multi-model framework[J]. Energy conversion and management, 2013, 76: 347-355.
[42] PRASAD R, ALI M, KWAN P, et al.Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation[J]. Applied energy, 2019, 236: 778-792.
[43] 姚海成, 周剑, 林琳, 等. 利用蝙蝠算法优化SVR的太阳辐照度预测方法研究[J]. 可再生能源, 2018, 36(11): 1612-1617.
YAO H C, ZHOU J, LIN L, et al.Solar radiation prediction method using bat algorithm optimized SVR[J]. Renewable energy resources, 2018, 36(11): 1612-1617.
[44] CHEN C R, KARTINI U.K-nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data[J]. Energies, 2017, 10(2): 186.
[45] SUN H W, YAN D, ZHAO N, et al.Empirical investigation on modeling solar radiation series with ARMA-GARCH models[J]. Energy conversion and management, 2015, 92: 385-395.
[46] GAIRAA K, KHELLAF A, MESSLEM Y, et al.Estimation of the daily global solar radiation based on Box-Jenkins and ANN models: a combined approach[J]. Renewable and sustainable energy reviews, 2016, 57: 238-249.
[47] FAN J L, WU L F, ZHANG F C, et al.Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China[J]. Renewable and sustainable energy reviews, 2019, 105: 168-186.
[48] 周满国, 黄艳国, 段锦锋. 基于GRU-RF模型的太阳辐照度短时预测[J]. 太阳能学报, 2022, 43(7): 166-173.
ZHOU M G, HUANG Y G, DUAN J F.Short term prediction of soral irradiance based on GRU-RF model[J]. Acta energiae solaris sinica, 2022, 43(7): 166-173.
[49] OLATOMIWA L, MEKHILEF S, SHAMSHIRBAND S, et al.A support vector machine-firefly algorithm-based model for global solar radiation prediction[J]. Solar energy, 2015, 115: 632-644.

基金

国家重点研发计划(2018YFB1502902); 国家自然科学基金(52208033)

PDF(2000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/