基于实测风场的沿海风力机叶片流固耦合特性分析

潘月月, 李正农, 张雨坤, 黄斌

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 330-340.

PDF(3490 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3490 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 330-340. DOI: 10.19912/j.0254-0096.tynxb.2023-0154

基于实测风场的沿海风力机叶片流固耦合特性分析

  • 潘月月1,2, 李正农2, 张雨坤3, 黄斌4
作者信息 +

ANALYSIS OF FLUID-STRUCTURE COUPLING CHARACTERISTICS OF COASTAL WIND TURBINE BLADEDS BASED ON MEASURED WIND FIELD

  • Pan Yueyue1,2, Li Zhengnong2, Zhang Yukun3, Huang Bin4
Author information +
文章历史 +

摘要

采用无人机测风手段实测获得某沿海风电场的风场特征,将所测量的风场参数应用到后续数值模拟中。以某2 MW风力机叶片全尺寸模型为研究对象,基于Workbench平台建立流固耦合系统进行计算,通过对比近尾流风速分布的数值模拟结果与实测结果来验证数值计算的准确性,进而计算额定风速下旋转叶片的挥舞变形和等效应力等响应。结果表明:风力机叶片的挥舞变形在0°方位角时最大,最大变形为1916.4 mm,接近静力加载试验最大挥舞工况结果2299 mm;相同方位角下的挥舞变形沿着叶片展向呈非线性增大,0.60倍风轮半径处变形增长速度明显提高。叶片等效应力集中区位于大梁和前缘侧交界处,最大值出现在60°方位角下0.78倍风轮半径处,同时在风轮高度方向上呈非对称分布。

Abstract

In this paper, the wind field characteristics of a coastal wind farm are obtained by the UAVs (unmanned aerial vehicles) wind filed measurement method, and the measured wind field parameters are applied to the subsequent computational fluid dynamics simulation. Taking the full-scale model of a 2 MW wind turbine blade as the research object, a fluid-structure coupling system is established based on Workbench platform for calculation. The numerical simulation results of near-wake wind velocity distribution are compared with the measured results, and the rationality of the numerical calculation is verified. Then, the flapping deformation and equivalent stress responses of the rotating blades at rated wind velocity are calculated. Results show that the flapping deformation of wind turbine blade reaches its maximum value at the azimuth of 0°, and the maximum flapping deformation is 1916.4 mm, which is close to the results of the static loading test 2299 mm. The flapping deformation increases nonlinearly along the span-wise direction of the blade, and with a larger increasing slope at 0.60 times the radius of the wind wheel. The equivalent stress concentration area of the blade is located at the junction of the girder and the leading edge, and appears at azimuth of 60°, where the maximum value is 0.78 times of the radius of the wind wheel. Stress is asymmetrically distributed along the wind wheel height direction.

关键词

风力机叶片 / 流固耦合 / 风速分布 / 挥舞变形 / 等效应力

Key words

wind turbine blades / fluid-structure interaction / wind velocity distribution / flapping deformation / equivalent stress

引用本文

导出引用
潘月月, 李正农, 张雨坤, 黄斌. 基于实测风场的沿海风力机叶片流固耦合特性分析[J]. 太阳能学报. 2023, 44(12): 330-340 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0154
Pan Yueyue, Li Zhengnong, Zhang Yukun, Huang Bin. ANALYSIS OF FLUID-STRUCTURE COUPLING CHARACTERISTICS OF COASTAL WIND TURBINE BLADEDS BASED ON MEASURED WIND FIELD[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 330-340 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0154
中图分类号: TK83   

参考文献

[1] TANG D, BAO S Y, LUO L J, et al.Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method[J]. Energy, 2017, 141: 2300-2313.
[2] 李德源, 汪显能, 莫文威, 等. 非定常条件下风力机柔性叶片气弹耦合分析[J]. 太阳能学报, 2017, 38(4): 966-975.
LI D Y, WANG X N, MO W W, et al.Aeroelastic coupling analysis of flexible blades of wind turbine under unsteady conditions[J]. Acta energiae solaris sinica, 2017, 38(4): 966-975.
[3] 温州台风网,http://www.wztf121.com/analyse/wzs.
Wenzhou Typhoon Network,http://www.wztf121.com/analyse/wzs.
[4] 楼文娟, 余江, 潘小涛. 风力机叶片挥舞摆振气弹失稳分析[J]. 工程力学, 2015, 32(11): 236-242.
LOU W J, YU J, PAN X T.Calculating for aerodynamic stability response of wind turbine blade in flapwise and edgewise direction[J]. Engineering mechanics, 2015, 32(11): 236-242.
[5] 王景全, 陈政清. 试析海上风机在强台风下叶片受损风险与对策: 考察红海湾风电场的启示[J]. 中国工程科学, 2010, 12(11): 32-34.
WANG J Q, CHEN Z Q.Analysis of risks and measures on the blade damage of offshore wind turbine during strong typhoons: enlightenment from Red Bay wind farm[J]. Engineering sciences, 2010, 12(11): 32-34.
[6] 陈佳慧, 王同光. 考虑气动弹性的风力机叶片性能分析[J]. 空气动力学学报, 2011, 29(3): 396-400.
CHEN J H, WANG T G.Wind turbine performance analysis with aeroelastic effect[J]. Acta aerodynamica sinica, 2011, 29(3): 396-400.
[7] 赵鹰, 廖猜猜, 秦志文, 等. 基于高精度有限元模型的叶片气弹耦合分析[J]. 工程热物理学报, 2017, 38(4): 748-753.
ZHAO Y, LIAO C C, QIN Z W, et al.Aeroelastic coupling analysis of blades based on high precision finite element model[J]. Journal of engineering thermophysics, 2017, 38(4): 748-753.
[8] 吕品, 廖明夫, 尹尧杰. 大型风力机叶片非线性流固耦合模型[J]. 太阳能学报, 2017, 38(8): 2126-2135.
LYU P, LIAO M F, YIN Y J.A structural-aerodynamic coupled method for nonlinear aeroelastic response of large-scaled hawt[J]. Acta energiae solaris sinica, 2017, 38(8): 2126-2135.
[9] 杨斌, 戴丽萍, 王晓东, 等. 大型风力机叶片非线性气弹模型[J]. 工程热物理学报, 2021, 42(3): 626-632.
YANG B, DAI L P, WANG X D, et al.Nonlinear aeroelastic model of large wind turbine blades[J]. Journal of engineering thermophysics, 2021, 42(3): 626-632.
[10] LEE Y J, JHAN Y T, CHUNG C H.Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect[J]. Composites part B: engineering, 2012, 43(5): 2180-2191.
[11] GUO T Q, LU Z L, TANG D, et al.A CFD/CSD model for aeroelastic calculations of large-scale wind turbines[J]. Science China technological sciences, 2013, 56(1): 205-211.
[12] DAI L P, ZHOU Q, ZHANG Y W, et al.Analysis of wind turbine blades aeroelastic performance under yaw conditions[J]. Journal of wind engineering and industrial aerodynamics, 2017, 171: 273-287.
[13] SAYED M, LUTZ T, KRÄMER E, et al. Aeroelastic analysis of 10 MW wind turbine using CFD-CSD explicit FSI-coupling approach[J]. Journal of fluids and structures, 2019, 87: 354-377.
[14] 李媛, 康顺, 王建录, 等. 2.5 MW风力机叶片流固耦合数值模拟[J]. 工程热物理学报, 2013, 34(1): 71-74.
LI Y, KANG S, WANG J L, et al.Numerical simulation of fluid-structure coupling of 2.5 MW wind turbine blades[J]. Journal of engineering thermophysics, 2013, 34(1): 71-74.
[15] 刘海锋, 孙凯, 胡丹梅. 大型风力机尾迹双向流固耦合特性分析[J]. 可再生能源, 2015, 33(11): 1664-1673.
LIU H F, SUN K, HU D M.Characteristic analysis of large wind turbine wake on two-way fluid-structure interaction[J]. Renewable energy resources, 2015, 33(11): 1664-1673.
[16] 赵元星, 汪建文, 白叶飞, 等. 切变来流下风力机叶片应力耦合性分析[J]. 工程热物理学报, 2019, 40(11): 2574-2581.
ZHAO Y X, WANG J W, BAI Y F, et al.Stress coupling analysis of wind turbine blades under wind shear flow[J]. Journal of engineering thermophysics, 2019, 40(11): 2574-2581.
[17] 宋力, 党永利, 谢晓凤, 等. 基于流固耦合的风力机叶片模拟分析[J]. 可再生能源, 2019, 37(10): 1546-1550.
SONG L, DANG Y L, XIE X F, et al.Wind turbine blade simulation analysis based on fluid-solid coupling[J]. Renewable energy resources, 2019, 37(10): 1546-1550.
[18] 柯世堂, 陆曼曼, 吴鸿鑫, 等. 基于风洞试验15 MW风力机叶片颤振后形态与能量图谱研究[J]. 空气动力学学报, 2022, 40(4): 169-180, 168.
KE S T, LU M M, WU H X, et al.Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. Acta aerodynamica sinica, 2022, 40(4): 169-180, 168.
[19] 周兴. 大气边界层实验模拟及水平轴风力机叶片动力学特性实验研究[D]. 武汉: 华中科技大学, 2016.
ZHOU X.ABL experimental simulation and research on dynamic characteristics of horizontal axis wind turbine blade[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[20] 潘月月, 李正农, 徐海华, 等. 沿海滩涂风力机近尾流风速分布特性研究[J]. 太阳能学报, 2022, 43(9): 193-201.
PAN Y Y, LI Z N, XU H H, et al.Near wake wind velocity distribution characteristics of wind turbine on coastal beach[J]. Acta energiae solaris sinica, 2022, 43(9): 193-201.
[21] LI Z N, PU O, PAN Y Y, et al.A study on measuring wind turbine wake based on UAV anemometry system[J]. Sustainable energy technologies and assessments, 2022, 53: 102537.
[22] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[23] 胡丹梅, 张志超, 孙凯, 等. 风力机叶片流固耦合计算分析[J]. 中国电机工程学报, 2013, 33(17): 98-104, 18.
HU D M, ZHANG Z C, SUN K, et al.Computational analysis of wind turbine blades based on fluid-structure interaction[J]. Proceedings of the CSEE, 2013, 33(17): 98-104, 18.
[24] 李德顺, 朱莹. 来流条件对风力机叶片流固耦合特性影响研究[J]. 液压气动与密封, 2022, 42(5): 17-24.
LI D S, ZHU Y.The effect of wind shear on wind turbine blades fluid-structure coupling characteristics[J]. Hydraulics pneumatics & seals, 2022, 42(5): 17-24.
[25] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer[J]. Experiments in fluids, 2012, 52(5): 1219-1235.
[26] 朱莹. 来流条件对风力机叶片流固耦合动力响应特性的影响[D]. 兰州: 兰州理工大学, 2021.
ZHU Y.Fluid-structure interaction dynamic response of wind turbine with influence of inflow conditions[D]. Lanzhou: Lanzhou University of Technology, 2021.
[27] 刘鑫, 闫姝, 郭雨桐, 等. 复杂地形下风力机尾流数值模拟研究和激光雷达实验对比[J]. 太阳能学报, 2020, 41(3): 1-7.
LIU X, YAN S, GUO Y T, et al.Cfd simulation and lidar experimental study on wind turbines in complex terrain[J]. Acta energiae solaris sinica, 2020, 41(3): 1-7.
[28] YE J J, CHU C C, CAI H, et al.A multi-scale model for studying failure mechanisms of composite wind turbine blades[J]. Composite structures, 2019, 212: 220-229.
[29] 李正农, 朱胜兵, 潘月月. 考虑结冰质量与刚度影响对风力机叶片模态分析[J]. 玻璃钢/复合材料, 2018(10): 82-89, 19.
LI Z N, ZHU S B, PAN Y Y.Research about the effect of icing stiffness and mass on the mode of large wind turbine blade[J]. Fiber reinforced plastics/composites, 2018(10): 82-89, 19.
[30] 赵元星. 气动载荷影响下风力机叶片动态应力特性研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
ZHAO Y X.Research on dynamic stress characteristics of wind turbine blade under aerodynamic load[D]. Hohhot: Inner Mongolia University of Tehchnology, 2021.
[31] 姚世刚, 戴丽萍, 康顺. 风力机叶片气动性能及流固耦合分析[J]. 工程热物理学报, 2016, 37(5): 988-992.
YAO S G, DAI L P, KANG S.Aerodynamic performance and fluid-structure coupling analysis of wind turbine blades[J]. Journal of engineering thermophysics, 2016, 37(5): 988-992.

基金

国家自然科学基金(51908430; 52178476; 52068019); 潍坊学院博士科研启动基金(2019BS16); 海南省自然科学基金(522RC605; 520QN231)

PDF(3490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/