针对大功率风电机组气动分析过程中叶素动量(BEM)理论计算精度不高、三维计算流体力学(CFD)仿真分析计算时间长的问题,以某5 MW风电叶片翼型数据为参考,分析不同风轮尺度下BEM与CFD的计算精度和效率;基于几何相似、运动相似和动力相似理论,推导缩比模型与原型之间的几何、运动、力学参数的比例关系,比较不同几何比例尺下风电叶片的气动性能;以几何比例尺为参考,建立大尺度风轮高精度缩比模型,分析多种工况下缩比模型CFD仿真的计算精度与效率。研究结果表明:风轮尺度越大,CFD与BEM分析的结果相对差值越大,多种工况下大尺度风轮缩比模型气动性能基本与原型保持一致,但计算效率获得大幅提升。
Abstract
In the process of aerodynamic analysis of high-power wind turbines, the calculation accuracy of BEM theory is not high, and the calculation time of 3D CFD simulation is long. Based on the data of a 5 MW wind turbine blade profile, the calculation accuracy and efficiency of BEM and CFD under different wind turbine scales are analyzed. Based on the principle of similarity, the proportional relationships of geometric, kinematic and mechanical parameters between the scaled model and the prototype are deduced. And the aerodynamic performance of the wind-electric blade under different geometric scales is compared. Taking geometric scale as reference, a large-scale wind wheel model with high precision is established. Then the computational accuracy and efficiency of CFD numerical simulation with the scaled model are analyzed under various conditions. The results show that the relative difference between the analysis results of BEM and CFD increases with the wind turbine size. The aerodynamic performance of the scaled model for large-scale wind turbine can keep basically consistent with that of the prototype model under various conditions. However, the computational efficiency for aerodynamic analysis is significantly improved.
关键词
风电机组 /
叶片 /
相似理论 /
计算流体力学 /
比例模型 /
叶素动量理论
Key words
wind turbines /
blades /
similarity theory /
computational fluid dynamics (CFD) /
scale model /
blade element momentum (BEM)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姚叶宸, 刘兆方, 黄典贵. 高效低载的三维风力机叶片外形优化设计方法[J]. 太阳能学报, 2023, 44(1): 257-264.
YAO Y C, LIU Z F, HUANG D G.High-efficiency and low-load three-dimensional wind turbine blade shape optimization design method[J]. Acta energiae solaris sinica, 2023, 44(1): 257-264.
[2] ECHJIJEM I, DJEBLI A.Effects of blade design linearization on aerodynamic performance of horizontal axis wind turbine[J]. International review of applied sciences and engineering, 2023, 14(1): 76-86.
[3] VERMA S, JOSHI A, PAUL A R.Design and multi-objective optimization of a horizontal axis wind turbine[C]//3rd International Conference on Energy and Power, ICEP2021, Chiang Mai, Thailand, 2022.
[4] KELELE H, FRØYD L, KAHSAY M, et al. Characterization of aerodynamics of small wind turbine blade for enhanced performance and low cost of energy[J]. Energies, 2022, 15(21): 8111.
[5] REFAN M, HANGAN H.Aerodynamic performance of a small horizontal axis wind turbine[J]. Journal of solar energy engineering, 2012, 134(2): 1.
[6] LIU S, JANAJREH I.Development and application of an improved blade element momentum method model on horizontal axis wind turbines[J]. International journal of energy and environmental engineering, 2012, 3(1): 1-10.
[7] SRITI M.Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal Axis wind turbine blade (HAWT)[J]. Technische mechanik, 2018, 38(2): 191-202.
[8] YE M K, CHEN H C, KOOP A.High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine[J]. Energy, 2023, 265: 126285.
[9] 李雄威, 徐家豪, 李庚达, 等. 一种新修正的风电机组尾流分析模型[J]. 太阳能学报, 2022, 43(8): 260-265.
LI X W, XU J H, LI G D, et al.A new modified analytical model for wind-turbine wakes[J]. Acta energiae solaris sinica, 2022, 43(8): 260-265.
[10] 张野, 刘诗尧, 李津津, 等. 风力机叶片三维速度场PIV测量及数值模拟研究[J]. 工程热物理学报, 2022, 43(10): 2642-2646.
ZHANG Y, LIU S Y, LI J J, et al.PIV measurement and numerical investigation of three-dimensional velocity field sround wind turbine blades[J]. Journal of engineering thermophysics, 2022, 43(10): 2642-2646.
[11] KIM Y, MADSEN H A, APARICIO-SANCHEZ M, et al.Assessment of blade element momentum codes under varying turbulence levels by comparing with blade resolved computational fluid dynamics[J]. Renewable energy, 2020, 160: 788-802.
[12] PLAZA B, BARDERA R, VISIEDO S.Comparison of BEM and CFD results for MEXICO rotor aerodynamics[J]. Journal of wind engineering and industrial aerodynamics, 2015, 145: 115-122.
[13] YOUNAS M F, ALI A, SHAFIQUE D.CFD simulation of HAWT blade and implementation of BEM theory[J]. Sukkur IBA journal of emerging technologies, 2019, 2(2): 21-35.
[14] 刘强, 杨科, 黄宸武, 等. 5 MW大型风力机气动特性计算及分析[J]. 工程热物理学报, 2012, 33(7): 1155-1159.
LIU Q, YANG K, HUANG C W, et al.Simulation and analysis of the aerodynamic characteristics of a 5 MW wind turbine[J]. Journal of engineering thermophysics, 2012, 33(7): 1155-1159.
[15] PERIC B, SIMONOVIC A, VORKAPIC M.Comparative analysis of numerical computational techniques for determination of the wind turbine aerodynamic performances[J]. Thermal science, 2021, 25(4 Part A): 2503-2515.
[16] HUANG G Q, ZHANG S Q, YAN B W, et al.Thrust-matched optimization of blades for the reduced-scale wind tunnel tests of wind turbine wakes[J]. Journal of wind engineering and industrial aerodynamics, 2022, 228: 105113.
[17] SERGIIENKO N Y, DA SILVA L S P, BACHYNSKI-POLIĆ E E, et al. Review of scaling laws applied to floating offshore wind turbines[J]. Renewable and sustainable energy reviews, 2022, 162: 112477.
[18] GIAHI M H, JAFARIAN D A.Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation[J]. Renewable energy, 2016, 97: 162-168.
[19] 黄宸武, 杨科, 刘强, 等. 相同雷诺数和尖速比下缩比风力机流动特性分析[J]. 工程热物理学报, 2013, 34(3): 440-444.
HUANG C W, YANG K, LIU Q, et al.Analysis on flow characteristics of scaled wind turbines at same Reynolds number and tip speed ratio[J]. Journal of engineering thermophysics, 2013, 34(3): 440-444.
[20] 李仁年, 刘姝君, 李德顺, 等. 基于相似理论的风力机气动特性分析[J]. 太阳能学报, 2015, 36(12): 2916-2921.
LI R N, LIU S J, LI D S, et al.Aerodynamic characteristics analysis of wind turbine based on similarity theory[J]. Acta energiae solaris sinica, 2015, 36(12): 2916-2921.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2009.
基金
国家自然科学基金(51805163; 52075164; 52205098); 湖南省自然科学基金(2019JJ50192)