该文以同轴双浮体波能装置为研究对象,以山东省波浪场资源为背景进行条件,首先提出Matlab-APDL-AQWA联合仿真系统,实现波能-功率全过程模拟,并将模拟结果与文献中的物理模型试验数据进行对比验证。同时探究随机波浪作用下浮体半径、质量参数及PTO参数对装置获能平均功率的影响。研究表明,双浮体的半径参数和质量参数会显著影响装置的平均功率,装置获能随PTO阻尼系数的增大呈先增后减的趋势,而PTO刚度系数在一定范围内变化对装置获能影响不明显。
Abstract
Taking the coaxial two-body wave energy converter(WEC) as the research object and the wave field resources in Shandong Province as the background conditions, This paper first proposes the MATLAB-APDL-AQWA joint simulation system is proposed at first, through the secondary development of Python, the effect of PTO damping is considered to realize the full process simulation system to realize the full process simulation of wave energy-power, and compares the simulation results with the physical model test data in the literature. At the same time, the influence of floating body radius, mass parameters and PTO parameters on the average power of the device was investigated under random wave conditions. The research shows that the radius parameters and mass parameters of the two-body will significantly affect the average power of the device, and the energy gain of the device will first increase of the PTO damping coefficient, while the change of the PTO stiffness coefficient within a certain range has no obvious impact on the energy gain of the device.
关键词
波浪能 /
联合仿真 /
同轴双浮体 /
PTO阻尼 /
平均功率
Key words
wave energy /
united simulation /
coaxial two-body /
PTO damping /
average power
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘延俊, 贾瑞, 张健. 波浪能发电技术的研究现状与发展前景[J]. 海洋技术学报, 2016, 35(5): 100-104.
LIU Y J, JIA R, ZHANG J.Research status and prospect of the wave power generation technology[J]. Journal of ocean technology, 2016, 35(5): 100-104.
[2] MAGAGNA D, UIHLEIN A.Ocean energy development in Europe: current status and future perspectives[J]. International journal of marine energy, 2015, 11: 84-104.
[3] SHI H D, DONG X C, CAO F F.Numerical simulation on energy delivery of heaving buoy converter system[C]//2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan, 2018: 1-5.
[4] AL SHAMI E, WANG X, ZHANG R, et al.A parameter study and optimization of two body wave energy converters[J]. Renewable energy, 2019, 131: 1-13.
[5] ZHENG Y H, SHEN Y M, YOU Y G, et al.Hydrodynamic properties of two vertical truncated cylinders in waves[J]. Ocean engineering, 2005, 32(3/4): 241-271.
[6] BACHYNSKI E E, YOUNG Y L, YEUNG R W.Analysis and optimization of a tethered wave energy converter in irregular waves[J]. Renewable energy, 2012, 48: 133-145.
[7] NAZARI M.Design of the point absorber wave energy converter for assaluyeh port[J]. Iranica journal of energy & environment, 2013, 4(2): 130-135.
[8] ZHANG L, JIN P, ZHOU B Z, et al.Oscillation and conversion performance of double-float wave energy converter[J]. Journal of marine science and application, 2019, 18(1): 54-63.
[9] 吴必军, 王幸, 刁向红, 等. 双圆柱形浮体波能装置双自由度响应及转换效率分析[J]. 中国科学: 物理学力学天文学, 2013, 43(8): 978-986.
WU B J, WANG X, DIAO X H, et al.Response and conversion efficiency of a wave energy device consisting of double cylindrical floats with two degrees of freedom[J]. Scientia sinica (physica, mechanica & astronomica), 2013, 43(8): 978-986.
[10] 林礼群, 吴春旭, 吴必军. 双浮体波能装置的功率转换特性研究[J]. 上海海洋大学学报, 2014, 23(3): 475-480.
LIN L Q, WU C X, WU B J.Study on power conversion features of the two-buoy wave energy device[J]. Journal of Shanghai Ocean University, 2014, 23(3): 475-480.
[11] HAN M, CAO F F, SHI H D, et al.Parametrical study on an array of point absorber wave energy converters[J]. Ocean engineering, 2023, 272: 113857.
[12] LI D M, DONG X C, SHI H D, et al.Theoretical and experimental study of a coaxial double-buoy wave energy converter[J]. China ocean engineering, 2021, 35(3): 454-464.
[13] DONG X C, GAO Z, LI D M, et al.Experimental and numerical study of a two-body heaving wave energy converter with different power take-off models[J]. Ocean engineering, 2021, 220: 108454.
基金
山东省自然科学基金(ZR2022ME002); 国家自然科学基金(52271297); 山东省自然科学基金(ZR2021ZD23); 中国工程院战略研究与咨询项目(2022-DFZD-36)