基于多能流耦合规律的综合能源系统潮流及㶲流分析

李鹏, 苏航, 周畅, 刘世通, 赵文升, 韩中合

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 249-258.

PDF(1998 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1998 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 249-258. DOI: 10.19912/j.0254-0096.tynxb.2023-0276

基于多能流耦合规律的综合能源系统潮流及㶲流分析

  • 李鹏1,2, 苏航1, 周畅1, 刘世通1, 赵文升1, 韩中合1,2
作者信息 +

INTEGRATED ENERGY SYSTEM POWER AND EXERGY FLOW ANALYSIS BASED ON MULTI-ENERGY FLOW COUPLING LAW

  • Li Peng1,2, Su Hang1, Zhou Chang1, Liu Shitong1, Zhao Wensheng1, Han Zhonghe1,2
Author information +
文章历史 +

摘要

从能量流和㶲流两个角度分析综合能源系统的多能流耦合规律,建立系统能流稳态潮流模型和㶲流模型,根据模型特点研究系统潮流和㶲流分布计算方法,以算例验证计算方法的可行性并分析计算数据,验证㶲流机理模型相比于黑箱模型在局部分析方面的优越性。以算例数据为例,分析其潮流及㶲流分布特点,结果表明:算例系统中能源转换环节的地方㶲损最大,为系统薄弱环节,值得着重改进;同时电、热网络也有部分管段㶲损较大,优化局部网络时也应纳入考虑。

Abstract

The paper analyzes the multi-energyflow coupling law of integrated energy system from two perspectives of energy flow and exergy flow, establishes the system flow steady-state tide model and exergy model, studies the calculation method of system tide and exergy flow distribution according to the model characteristics, and verifies the feasibility of the calculation method with calculation examples, and analyzes the calculation data to verify the superiority of the exergy flow mechanism model compared with the traditional black box model. The results show that the tidal current and the distribution characteristics of the radiation flow are analyzed with the data of the calculation example, and it is pointed out that the energy conversion link has the largest exergy loss, which is the weak link of the system, and it is worth to focus on the improvement, while the electric and thermal networks also have some pipe sections with large radiation loss, which should be taken into consideration when optimizing the local network.

关键词

综合能源系统 / 多能耦合 / 潮流计算 / 多能流耦合 / ?分析 / 黑箱模型

Key words

integrated energy system / multi energy coupling / load flow calculation / multi-energy flow coupling / exergy flow analysis / black box model

引用本文

导出引用
李鹏, 苏航, 周畅, 刘世通, 赵文升, 韩中合. 基于多能流耦合规律的综合能源系统潮流及㶲流分析[J]. 太阳能学报. 2024, 45(7): 249-258 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0276
Li Peng, Su Hang, Zhou Chang, Liu Shitong, Zhao Wensheng, Han Zhonghe. INTEGRATED ENERGY SYSTEM POWER AND EXERGY FLOW ANALYSIS BASED ON MULTI-ENERGY FLOW COUPLING LAW[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 249-258 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0276
中图分类号: TM744   

参考文献

[1] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[2] 王刚, 曹勇, 王树坤, 等. ISCC分布式能源站的系统设计与初步分析[J]. 太阳能学报, 2021, 42(8): 66-70.
WANG G, CAO Y, WANG S K, et al.Design and preliminary analysis of iscc distributed energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 66-70.
[3] 刘育杰. 电-气-热-冷综合能源系统多能潮流计算[D]. 长春: 吉林大学, 2021.
LIU Y J.Multi-energy power flow calculation of electric-gas-heat-cold integrated energy system[D]. Changchun: Jilin University, 2021.
[4] CORREA-POSADA C M, SÁNCHEZ-MARTıN P. Security-constrained optimal power and natural-gas flow[J]. IEEE transactions on power systems, 2014, 29(4): 1780-1787.
[5] 荀挺, 雷胜华, 丁晓辰, 等. 区域综合能源系统的多目标最优潮流算法研究[J]. 智慧电力, 2019, 47(9): 19-28.
XUN T, LEI S H, DING X C, et al.Multi-objective optimal power flow algorithms for integrated community energy systems[J]. Smart power, 2019, 47(9): 19-28.
[6] PAN Z G, GUO Q L, SUN H B.Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow[J]. Applied energy, 2016, 167: 230-243.
[7] 薛提微, 陈群. 基于网络热力学的热力系统能量流描述[J]. 工程热物理学报, 2021, 42(6): 1492-1498.
XUE T W, CHEN Q.Energy flow description of thermodynamic system based on network thermodynamics[J]. Journal of engineering thermophysics, 2021, 42(6): 1492-1498.
[8] 杜超. 天然气管道流动模拟及流动保障分析[D]. 东营: 中国石油大学(华东), 2015.
DU C.Simulation of natural gas pipeline and analysis of flowing assurance[D]. Dongying: China University of Petroleum (Huadong), 2015.
[9] 胡潇云. 考虑概率和模糊不确定性的区域电-气联合系统能流及最优能流分析[D]. 重庆: 重庆大学, 2020.
HU X Y.Energy flow and optimal energy flow analysis of regional electric-gas combined system considering probability and fuzzy uncertainty[D]. Chongqing: Chongqing University, 2020.
[10] 王永利, 周泯含, 姚苏航, 等. 基于多能耦合机理的综合能源系统多元负荷协同预测模型[J]. 华北电力大学学报(自然科学版), 2022, 49(2): 118-126.
WANG Y L, ZHOU M H, YAO S H, et al.Multi-load cooperative prediction model of integrated energy system based on multi-energy coupling mechanism[J]. Journal of North China Electric Power University (natural science edition), 2022, 49(2): 118-126.
[11] 王一帆, 李娜, 潘崇超, 等. 基于㶲分析的多能互补能源系统模型优化及调度策略研究[J]. 全球能源互联网, 2021, 4(3): 249-263.
WANG Y F, LI N, PAN C C, et al.Research on model optimization and dispatching strategy of multi-energy complementary energy system based on exergy analysis[J]. Journal of global energy interconnection, 2021, 4(3): 249-263.
[12] 黄宇, 王宇涛, 李淑琴, 等. 计及㶲分析的综合能源系统多目标优化调度[J]. 太阳能学报, 2022, 43(7): 30-38.
HUANG Y, WANG Y T, LI S Q, et al.Multi-objective optimal scheduling of integrated energy system with thermodynamic exergy analysis method[J]. Acta energiae solaris sinica, 2022, 43(7): 30-38.
[13] HU X, ZHANG H, CHEN D W, et al.Multi-objective planning for integrated energy systems considering both exergy efficiency and economy[J]. Energy, 2020, 197: 117155.
[14] 刘洪, 赵越, 刘晓鸥, 等. 计及能源品位差异的园区多能源系统综合能效评估[J]. 电网技术, 2019, 43(8): 2835-2843.
LIU H, ZHAO Y, LIU X O, et al.Comprehensive energy efficiency assessment of park-level multi-energy system considering difference of energy grade[J]. Power system technology, 2019, 43(8): 2835-2843.
[15] 李家熙, 王丹, 贾宏杰. 面向综合能源系统的㶲流机理与分析方法[J]. 电力系统自动化, 2022, 46(12): 163-173.
LI J X, WANG D, JIA H J.Exergy flow mechanism and analysis method for integrated energy system[J]. Automation of electric power systems, 2022, 46(12): 163-173.
[16] 刘聪, 迟福建, 张艺伟, 等. 电/热/气综合能源系统混合潮流计算方法[J]. 山东工业技术, 2017(19): 163-165.
LIU C, CHI F J, ZHANG Y W, et al.Calculation method of mixed power flow in electric/thermal/gas integrated energy system[J]. Shandong industrial technology, 2017(19): 163-165.
[17] MARTINEZ-MARES A, FUERTE-ESQUIVEL C R. A unified gas and power flow analysis in natural gas and electricity coupled networks[J]. IEEE transactions on power systems, 2012, 27(4): 2156-2166.
[18] 谢华宝, 胡林献. 电热联合系统潮流计算[J]. 供用电, 2017, 34(12): 21-26, 20.
XIE H B, HU L X.Power flow calculation of combined heat and electricity system[J]. Distribution & utilization, 2017, 34(12): 21-26, 20.
[19] 刘述欣. 电热联合系统潮流及最优潮流研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LIU S X.Study on power flow and optimal power flow of electrothermal combined system[D]. Harbin: Harbin Institute of Technology, 2017.
[20] 刘述欣, 戴赛, 胡林献, 等. 计及回水管网热损失的电热联合系统潮流模型及算法[J]. 电力系统自动化, 2018, 42(4): 77-81, 134.
LIU S X, DAI S, HU L X, et al.Power flow model and algorithm of combined power and heat system considering heat loss in return pipe network[J]. Automation of electric power systems, 2018, 42(4): 77-81, 134.
[21] 张义斌. 天然气-电力混合系统分析方法研究[D]. 北京: 中国电力科学研究院, 2005.
ZHANG Y B.Study on the methods for analyzing combined gas and electricity networks[D].Beijing: China Electric Power Research Institute, 2005.
[22] 马志侠, 张林鍹, 郑兴, 等. 基于PEMFC-P2G与风光不确定的综合能源系统优化调度[J]. 太阳能学报, 2022, 43(6): 441-447.
MA Z X, ZHANG L X, ZHENG X, et al.Optimal scheduling of integrated energy system based on PEMFC-P2G and inpact of wind power and photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2022, 43(6): 441-447.
[23] LI J X, WANG D, JIA H J, et al.Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system[J]. Applied energy, 2022, 324: 119725.
[24] 王丹, 李家熙, 周天烁, 等. 一种基于非平衡节点㶲的综合能源系统㶲流直接计算方法: CN115062555A[P].2022-09-16.
WANG D, LI J X, ZHOU T S, et al. Comprehensive energy system flow direct calculation method based on unbalanced nodes: CN115062555A[P].2022-09-16.
[25] ABEYSEKERA M, WU J, JENKINS N, et al.Steady state analysis of gas networks with distributed injection of alternative gas[J]. Applied energy, 2016, 164: 991-1002.
[26] 何仰赞, 温增银. 电力系统分析-上册[M]. 3版. 武汉: 华中科技大学出版社, 2002: 70-72.
HE Y Z, WEN Z Y.Power system analysis-Volume 1[M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 70-72.
[27] 陈聪, 沈欣炜, 夏天, 等. 计及㶲效率的综合能源系统多目标优化调度方法[J]. 电力系统自动化, 2019, 43(12): 60-67, 121.
CHEN C, SHEN X W, XIA T, et al.Multi-objective optimal dispatch method for integrated energy system considering exergy efficiency[J]. Automation of electric power systems, 2019, 43(12): 60-67, 121.

基金

国家自然科学基金(52106010); 中央高校基本科研业务费专项资金(2021MS077); 保定市科技计划(2272P017)

PDF(1998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/