弱电网下自同步电压源低电压穿越双模式切换控制方法

柳丹, 江克证, 康逸群, 曹侃, 刘芳, 徐韫钰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 77-85.

PDF(1681 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1681 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 77-85. DOI: 10.19912/j.0254-0096.tynxb.2023-0277

弱电网下自同步电压源低电压穿越双模式切换控制方法

  • 柳丹1, 江克证1, 康逸群1, 曹侃1, 刘芳2, 徐韫钰2
作者信息 +

SELF-SYNCHRONIZATION LVRT DUAL-MODE SWITCHING CONTROL METHOD UNDER WEAK GRID

  • Liu Dan1, Jiang Kezheng1, Kang Yiqun1, Cao Kan1, Liu Fang2, Xu Yunyu2
Author information +
文章历史 +

摘要

针对弱电网情况下自同步电压源在低电压穿越时的瞬态过电压和过电流问题,推导电网阻抗、角度跳变、电压跌落深度下的数学方程,并分析影响过电压和过电流的关键因素,进而提出一种自同步电压源低电压穿越(LVRT)双模式切换控制方法,当电网正常运行时采用自同步电压源均衡控制方法,该方法基于虚拟阻抗并通过模拟阻抗来实现平衡电压环和电流环的控制能力;当电网处于电压跌落状态时采用基于强电流控制的LVRT模式,可有效提升电压跌落瞬态、低电压穿越过程以及电压恢复阶段的平滑过渡能力。并提出一种电压恢复控制策略,该控制策略基于多状态反馈跟随器,可有效抑制过渡过程中电压与电流瞬时变化,通过相位突变补偿控制策略抑制瞬态过电流冲击,帮助电网电压恢复。最后,利用Matlab/Simulink建模仿真软件验证该控制方法的可行性和优势性。

Abstract

Aiming at the transient over-voltage and over-circuit problems of self-synchronous voltage source at low voltage ride through(LVRT) in the case of weak grid, this paper derives the mathematical equations of grid impedance, angle jump and voltage drop depth, and analyzes the key factors affecting over-voltage and over-current. Then, a self-synchronous voltage source LVRT dual-mode switching control method is proposed. When the power grid is normal, the self-synchronous voltage source equalization control method based on virtual impedance is used to balance the control strength of the voltage loop and the current loop by simulating the impedance. When the grid is in the state of voltage drop, the low voltage ride through mode based on strong current control can effectively improve the smooth transition ability of voltage drop transient, low voltage ride through process and voltage recovery stage. At the same time, in order to further suppress the voltage and current transients in the transition process, a voltage recovery control strategy based on multi-state feedback follower is proposed, and the transient overcurrent impact is suppressed by the phase mutation compensation control strategy to help the network voltage repair. Finally, the feasibility and superiority of the control method are verified by Matlab/Simulink modeling and simulation software.

关键词

自同步电压源 / 短路比 / 低电压穿越 / 虚拟阻抗 / 状态反馈

Key words

self-synchronous voltage source / short circuit ratio / low voltage ride through / virtual impedance / multi-state feedback

引用本文

导出引用
柳丹, 江克证, 康逸群, 曹侃, 刘芳, 徐韫钰. 弱电网下自同步电压源低电压穿越双模式切换控制方法[J]. 太阳能学报. 2024, 45(10): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0277
Liu Dan, Jiang Kezheng, Kang Yiqun, Cao Kan, Liu Fang, Xu Yunyu. SELF-SYNCHRONIZATION LVRT DUAL-MODE SWITCHING CONTROL METHOD UNDER WEAK GRID[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 77-85 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0277
中图分类号: TM46   

参考文献

[1] 陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革: 多能流协同技术[J]. 电力自动化设备, 2021, 41(9): 3-12.
CHEN S, WEI Z N, GU W, et al.Carbon neutral oriented transition and revolution of energy systems: multi-energy flow coordination technology[J]. Electric power automation equipment, 2021, 41(9): 3-12.
[2] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1855.
WEN Y F, YANG W F, WANG R H, et al.Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1855.
[3] KIWAN S, AL-GHARIBEH E.Jordan toward a 100% renewable electricity system[J]. Renewable energy, 2020, 147: 423-436.
[4] 于琳, 孙华东, 徐式蕴, 等. 电力电子设备接入电压支撑强度量化评估指标综述[J]. 中国电机工程学报, 2022, 42(2): 499-514.
YU L, SUN H D, XU S Y, et al.Overview of strength quantification indexes of power system with power electronic equipment[J]. Proceedings of the CSEE, 2022, 42(2): 499-514.
[5] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
WEN Y F, YANG W F, LIN X H.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric power automation equipment, 2020, 40(9): 211-222.
[6] TENG Y T, DENG W, PEI W, et al.Review on grid-forming converter control methods in high-proportion renewable energy power systems[J]. Global energy interconnection, 2022, 5(3): 328-342.
[7] ZHANG H B, XIANG W, LIN W X, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of modern power systems and clean energy, 2021, 9(6): 1239-1256.
[8] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3594.
XU J Y, LIU W, LIU S, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power system technology, 2022, 46(9): 3586-3594.
[9] LUO Z Z, HAN H, CHEN S M, et al.Power oscillation suppression method based on distributed cooperative control of multi-VSG grids[C]//2021 IEEE 12th Energy Conversion Congress & Exposition-Asia(ECCE-Asia).Singapore, Singapore, 2021: 1875-1878.
[10] WANG J N, LI F X, CUI H T, et al.Impacts of VSG control on frequency response in power systems with high-penetration renewables[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration(EI2).Taiyuan, China, 2021: 171-176.
[11] 顾浩瀚, 蔡旭, 李征. 基于改进型电网电压前馈的光伏电站低电压穿越控制策略[J]. 电力自动化设备, 2017, 37(7): 13-19, 31.
GU H H, CAI X, LI Z.LVRT control strategy based on improved grid-voltage feed-forward for photovoltaic station[J]. Electric power automation equipment, 2017, 37(7): 13-19, 31.
[12] 邢鹏翔, 贾璇悦, 许长清, 等. VSG低电压穿越的特性分析及控制方法研究[J]. 电网与清洁能源, 2022, 38(8): 130-137, 143.
XING P X, JIA X Y, XU C Q, et al.A study on characteristic analysis and control methods of low voltage ride through for the VSG[J]. Power system and clean energy, 2022, 38(8): 130-137, 143.
[13] 胡海林, 万晓凤, 丁小华, 等. 分布式虚拟同步发电机改进低电压穿越控制技术[J]. 电机与控制学报, 2020, 24(1): 145-155.
HU H L, WAN X F, DING X H, et al.Improved low voltage ride-through control strategy for distributed virtual synchronous generator[J]. Electric machines and control, 2020, 24(1): 145-155.
[14] 刘航, 王跃, 刘永慧, 等. 基于定量设计虚拟阻抗的VSG低电压穿越策略[J]. 高电压技术, 2022, 48(1): 245-256.
LIU H, WANG Y, LIU Y H, et al.The LVRT strategy for VSG based on the quantitatively designed virtual impedance[J]. High voltage engineering, 2022, 48(1): 245-256.
[15] 党克, 田勇, 刘子源, 等. 串联制动电阻提高VSG的LVRT能力和功角稳定研究[J]. 太阳能学报, 2022, 43(1): 323-328.
DANG K, TIAN Y, LIU Z Y, et al.Study on improving lvrt capability and power angle stability of VSG by series braking resistor[J]. Acta energiae solaris sinica, 2022, 43(1): 323-328.
[16] 王雪梅, 王艺博, 刘雨桐, 等. 基于虚拟电抗的主动支撑型新能源机组低电压穿越控制方法[J]. 电网技术, 2022, 46(11): 4435-4443.
WANG X M, WANG Y B, LIU Y T, et al.Low voltage ride-through control of actively-supported new energy unit based on virtual reactance[J]. Power system technology, 2022, 46(11): 4435-4443.
[17] 施凯, 叶海涵, 徐培凤, 等. 基于欠励磁状态运行的虚拟同步发电机低电压穿越控制策略[J]. 电力系统自动化, 2018, 42(9): 134-140.
SHI K, YE H H, XU P F, et al.Under-excitation operation of low voltage ride-through control strategy for virtual synchronous generator[J]. Automation of electric power systems, 2018, 42(9): 134-140.
[18] 董纪清, 潘佳清, 毛行奎. 自适应正负序复合控制的VSG低电压穿越策略[J]. 电网技术, 2023, 47(2): 815-822.
DONG J Q, PAN J Q, MAO X K.Low voltage ride-through strategy of VSG based on adaptive positive and negative sequence composite control[J]. Power system technology, 2023, 47(2): 815-822.
[19] 陈天一, 陈来军, 郑天文, 等. 基于模式平滑切换的虚拟同步发电机低电压穿越控制方法[J]. 电网技术, 2016, 40(7): 2134-2140.
CHEN T Y, CHEN L J, ZHENG T W, et al.LVRT control method of virtual synchronous generator based on mode smooth switching[J]. Power system technology, 2016, 40(7): 2134-2140.
[20] 李华, 高怀正, 郝悦, 等. 基于虚拟同步发电机低电压穿越的无缝切换控制策略[J]. 太阳能学报, 2021, 42(3): 114-120.
LI H, GAO H Z, HAO Y, et al.Seamless switching control strategy for low voltage ride-through based on virtual synchronous generator[J]. Acta energiae solaris sinica, 2021, 42(3): 114-120.
[21] 郑涛, 王子鸣, 邹芃蓥. 基于相位跳变补偿的虚拟同步发电机低电压穿越控制策略研究[J]. 电网技术, 2023, 47(1): 100-108.
ZHENG T, WANG Z M, ZOU P Y.Research on low voltage ride-through control strategy of virtual synchronous generator based on phase jump compensation[J]. Power system technology, 2023, 47(1): 100-108.
[22] 高怀正, 李华, 常兴, 等. 电压跌落下虚拟同步发电机故障穿越控制[J]. 电力系统保护与控制, 2018, 46(17): 39-46.
GAO H Z, LI H, CHANG X, et al.Fault ride-through of virtual synchronous generator under voltage drop[J]. Power system protection and control, 2018, 46(17): 39-46.
[23] 柳丹, 江克证, 康逸群, 等. 弱网下新能源逆变器自同步电压源低电压穿越控制方法[J]. 中国电力, 2024, 57(7): 21-29.
LIU D, JIANG K Z, KANG Y Q, et al.Self-synchronization voltage source LVRT control method under weak grid for new energy inverter[J]. Electric power,2024, 57(7): 21-29.
[24] 刘其辉, 吴勇, 闫佳颖, 等. 考虑相位跳变的双馈风电机组低电压穿越特性分析与暂态过电压抑制[J]. 太阳能学报, 2024, 45(5): 86-94.
LIU Q H, WU Y, YAN J Y, et al.Analysis of LVRT characteristics and transientovervoltage suppression of DFIG-based wind turbinesconsidering phase angle jump[J]. Acta energiae solaris sinica, 2024, 45(5): 86-94.
[25] 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究[J]. 太阳能学报, 2024, 45(2): 376-383.
ZHU Z B, SUN S M, DING Y M, et al.Study on low voltage ride through control strategy based on VSG[J]. Acta energiae solaris sinica, 2024, 45(2): 376-383.
[26] 张宇, 蔡旭, 张琛, 等. 并网变换器的暂态同步稳定性研究综述[J]. 中国电机工程学报, 2021, 41(5): 1687-1701.
ZHANG Y, CAI X, ZHANG C, et al.Transient synchronization stability analysis of voltage source converters: a review[J]. Proceedings of the CSEE, 2021, 41(5): 1687-1701.
[27] 裴金鑫, 姚骏, 黄森, 等. 电网短路故障下新能源并网变换器的暂态同步机制及其自适应稳定控制策略[J]. 中国电机工程学报, 2022, 42(16): 5922-5934.
PEI J X, YAO J, HUANG S, et al.Transient synchronization mechanism and adaptive stability control strategy for renewable energy grid-connected converter under grid faults[J]. Proceedings of the CSEE, 2022, 42(16): 5922-5934.
[28] GB/T 19964—2012, 光伏发电站接入电力系统技术规定[S].
GB/T 19964—2012, Technical requirements for connecting photovoltaic power station to power system[S].
[29] 刘芳. LCL-VSR的控制与设计[D]. 合肥: 合肥工业大学, 2008.
LIU F.Control and design of LCL-VSR[D]. Hefei: Hefei University of Technology, 2008.
[30] 刘芳, 刘威, 徐韫钰, 等. 弱电网条件下并网逆变器控制环路稳定判据及交互作用规律分析[J]. 中国电机工程学报, 2023, 43(2): 466-481.
LIU F, LIU W, XU Y Y, et al.Analysis on stability criterion and interaction law of grid-connected inverter control loop under weak grid condition[J]. Proceedings of the CSEE, 2023, 43(2): 466-481.

基金

国家电网公司科技项目(县域高比例可再生能源电力系统运行关键技术研究)(4000-202122070A-0-0-00)

PDF(1681 KB)

Accesses

Citation

Detail

段落导航
相关文章

/