基于测量不确定度评定理论的波浪能发电装置实验数据质量评价研究

李健, 路宽, 王花梅, 王项南, 邱泓茗

太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 178-184.

PDF(1771 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1771 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (5) : 178-184. DOI: 10.19912/j.0254-0096.tynxb.2023-0312

基于测量不确定度评定理论的波浪能发电装置实验数据质量评价研究

  • 李健, 路宽, 王花梅, 王项南, 邱泓茗
作者信息 +

RESEARCH ON TEST DATA QUALITY EVALUATION OF WAVE ENERGY DEVICE BY MEASUREMENT UNCERTAINTY THEORY

  • Li Jian, Lu Kuan, Wang Huamei, Wang Xiangnan, Qiu Hongming
Author information +
文章历史 +

摘要

通过采用测量不确定度评定理论提出波浪能发电装置实验室俘获宽度比测试的数据质量评价模型并进行验证,可为后续建立波浪能发电装置实验数据的量值溯源链,完善波浪能发电数据评估技术提供研究基础。研究表明,在同一工况下实验结果的测量不确定度与样本量有关,在采用测量不确定度评价不同装置的实验数据质量时应在相同或相近的样本量条件下进行,避免由于样本量的不同造成实验结果的评价差异。

Abstract

Measurement uncertainty is a non negative parameter representing the dispersion of measured values. It is indicated that the Measurement uncertainty is more smaller,the quality of measurement results is more higher,and the data value is recognized widely. In this paper, the measurement uncertainty evaluation theory is used to establish a data quality evaluation model for the wave electricity conversion efficiency test in the wave energy power generation device laboratory, and data validation is carried out, so as to establish a traceability chain for the value of the wave energy device experimental data, and provides a research foundation for the improvement of wave energy device data evaluation technology. Through this study, it is shown that the measurement uncertainty of experimental results under the same operating condition is related to the sample size. When the evaluating of the quality of experimental data for different devices is using measurement uncertainty, it should be carried out under the same or similar sample size conditions to avoid the differences of the evaluation of experimental results due to different sample sizes.

关键词

波浪能发电装置 / 波浪能 / 测量不确定度 / 数据质量 / 实验室测试 / 数据处理

Key words

wave energy device / wave energy / measurement uncertainty / data quality / laboratory testing / data processing

引用本文

导出引用
李健, 路宽, 王花梅, 王项南, 邱泓茗. 基于测量不确定度评定理论的波浪能发电装置实验数据质量评价研究[J]. 太阳能学报. 2024, 45(5): 178-184 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0312
Li Jian, Lu Kuan, Wang Huamei, Wang Xiangnan, Qiu Hongming. RESEARCH ON TEST DATA QUALITY EVALUATION OF WAVE ENERGY DEVICE BY MEASUREMENT UNCERTAINTY THEORY[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 178-184 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0312
中图分类号: P743.2    TK79   

参考文献

[1] SELIN R.The outlook for energy: a view to 2040[C]//Proceedings of the 2013 South East Asia Petroleum Exploration Society (SEAPEX) Conference, Singapore, 2013: 1-14.
[2] 王传崑, 施伟勇. 中国海洋能资源的储量及其评价[C]//中国可再生能源学会海洋能专业委员会第一届学术讨论会文集, 杭州, 中国, 2008: 171-181.
WANG C K, SHI W Y.Reserves and evaluation of marine energy resources of China[C]//Collected Works of the First Academic Seminar of Marine Energy Professional Committee of China Renewable Energy Society, Hangzhou, China, 2008: 171-181.
[3] 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923.
SHI W Y, WANG C K, SHEN J F.Utilization and prospect of ocean energy resource in China[J]. Acta energiae solaris sinica, 2011, 32(6): 913-923.
[4] 王志华, 王光震, 姚涛, 等. 基于单摆和拾振弹簧的漂浮式波浪能发电装置研究[J]. 可再生能源, 2021, 39(7): 988-994.
WANG Z H, WANG G Z, YAO T, et al.Research on floating wave energy generation device based on single pendulum and pick-up spring[J]. Renewable energy resources, 2021, 39(7): 988-994.
[5] 高功正, 耿大洲, 顾兴远, 等. 漂浮摆式波浪能发电装置的频时域仿真分析[J]. 海洋可再生能源, 2022, 40(3): 421-426.
GAO G Z, GENG D Z, GU X Y, et al.Frequency and time domain simulation analysis of floating-pendulum-type wave energy converter[J]. Renewable energy resources, 2022, 40(3): 421-426.
[6] 陈远明, 周昭民, 樊天慧, 等. 新型摆板式波浪能发电装置的设计与模型试验[J]. 中国海洋平台, 2022, 37(3): 61-65.
CHEN Y M, ZHOU Z M, FAN T H, et al.Design and model test of novel flap-type wave energy converter[J]. China offshore platform, 2022, 37(3): 61-65.
[7] 杜小振, 郭悦, 文傲, 等. 振荡水柱驱动介电弹性体发电研究[J]. 太阳能学报, 2020, 41(10): 8-14.
DU X Z, GUO Y, WEN A, et al.Research on power generation of dielectric elastomer driven by oscillatingwater column[J]. Acta energiae solaris sinica, 2020, 41(10): 8-14.
[8] 石晶鑫, 李德堂, 李达特, 等. 振荡浮筒式波浪能发电装置设计与实验研究[J]. 船舶, 2013, 24(6): 27-31.
SHI J X, LI D T, LI D T, et al.Design and experimental research of oscillating buoy wave power device[J]. Ship & boat, 2013, 24(6): 27-31.
[9] 顾煜炯, 谢典. 一种振荡浮子式波浪能发电装置的实验研究[J]. 太阳能学报, 2017, 38(2): 551-557.
GU Y J, XIE D.Experimental research of oscillation float type wave energy power generation device[J]. Acta energiae solaris sinica, 2017, 38(2): 551-557.
[10] 夏海南, 王项南, 李强, 等. 波浪能发电装置现场测试中波浪参数比测分析[J]. 太阳能学报, 2022, 43(6): 251-255.
XIA H N, WANG X N, LI Q, et al.Comparison and analysis of wave parameters in field test of wave energy converters[J]. Acta energiae solaris sinica, 2022, 43(6): 251-255.
[11] 刘志伟, 熊指南. 基于WW3模式的台湾岛周边海域的波浪能资源模拟研究[J]. 可再生能源, 2020, 38(9): 1272-1278.
LIU Z W, XIONG Z N.Simulation of wave energy resources in the waters around Taiwan island based on WW3 model[J]. Renewable energy resources, 2020, 38(9): 1272-1278.
[12] 万勇, 张杰, 孟俊敏, 等. 基于ERA-Interim再分析数据的OE-W01区块波浪能资源评估[J]. 资源科学, 2014, 36(6): 1278-1287.
WAN Y, ZHANG J, MENG J M, et al.Assessment of wave energy resources for the OE-W01 area based on ERA-Interim reanalysis data[J]. Resources science, 2014, 36(6): 1278-1287.
[13] 何中一. 风电机组功率特性测量不确定度的量级研究[J]. 科技创新与应用, 2021, 11(26): 21-23.
HE Z Y.Study on the magnitude of uncertainty in measurement of power characteristics of wind turbines[J]. Technology innovation and application, 2021, 11(26): 21-23.
[14] 陈晨, 王瑞明, 李少林, 等. 风电并网检测不确定度分析及评定方法研究[J]. 电测与仪表, 2015, 52(13): 25-30.
CHEN C, WANG R M, LI S L, et al.Research on uncertainty analysis and evaluation methods of wind power grid-integration test[J]. Electrical measurement & instrumentation, 2015, 52(13): 25-30.
[15] 陈彩云. 光伏用硅片电阻率四探针法测量值不确定度评定[J]. 计量与测试技术, 2018, 45(10): 109-112.
CHEN C Y.Uncertainty evaluation of resistivity in photovoltaic silicon wafer with the four-probe method[J]. Metrology & measurement technique, 2018, 45(10): 109-112.
[16] 王金玉, 胡涛, 袁明翰, 等. 光伏组件最大功率的测量不确定度评定[J]. 太阳能, 2016(8): 46-48, 32.
WANG J Y, HU T, YUAN M H, et al.Evaluation of uncertainty in measurement of maximum power of photovoltaic module[J]. Solar energy, 2016(8): 46-48, 32.
[17] CHENG L L, YAGHOUBI V, VAN PAEPEGEM W, et al.Integrated interval Mahalanobis classification system for the quality classification of turbine blades based on vibrational data incorporating measurement uncertainty[J]. Structural health monitoring, 2023, 22(1): 166-179.
[18] KIM G, KIM H, ZIO E, et al.Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants[J]. Nuclear engineering and technology, 2018, 50(8): 1314-1323.
[19] JJF1001—2011, 通用计量术语及定义[S].
JJF1001—2011, General terms in metrology and their definitions[S].
[20] 高维胜, 羊衍富. 检测实验室测量不确定度评定与应用现状[J]. 中国检验检测, 2018(6): 60-63.
GAO W S, YANG Y F.Evaluation and application of Measurement uncertainty in testing laboratories[J]. China inspection and testing, 2018(6): 60-63.
[21] 靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131.
JIN H Y, LIU J.The evaluation method and application research of Measurement uncertainty[J]. Metrology science and technology, 2021, 65(5): 124-131.
[22] JJF1059.1—2012, 测量不确定度评定与表示[S].
JJF1059.1—2012, Evaluation and Expression of Uncertainty in Measurement[S].
[23] 史圣哲, 郑亚雄. 潜艇标模阻力试验的不确定度分析[J]. 实验流体力学, 2015, 29(5): 65-71.
SHI S Z, ZHENG Y X.Uncertainty analysis in submarine standard model resistance test[J]. Journal of experiments in fluid mechanics, 2015, 29(5): 65-71.
[24] HY/T0299—2020, 海洋观测仪器设备室内动力环境模型试验方法总则[S].
HY/T0299—2020, The method of dynamic environmental model test for oceanographic observation instructis in laboratory-general[S].
[25] 倪育才. 实用测量不确定度评定[M]. 北京: 中国标准出版社, 2014: 102-103.
NI Y C.Evaluation of practical Measurement uncertainty[M]. Beijing: Standards Press of China, 2014: 102-103.
[26] 伍儒康, 陈毅, 彭泽钦, 等. 振荡水柱波浪能发电装置中负载电路对其性能的影响[J]. 太阳能学报, 2022, 43(9): 410-415.
WU R K, CHEN Y, PENG Z Q, et al.Influence of circuit on power generation performance of wave energy power generation device using oscillating water column technology[J]. Acta energiae solaris sinica, 2022, 43(9): 410-415.

基金

国家重点研发计划(2023YFC3107505)

PDF(1771 KB)

Accesses

Citation

Detail

段落导航
相关文章

/