基于自恢复型下垂控制的微电网运行控制策略研究

田春胜, 任永峰, 胡志帅, 孟庆天, 陈建, 张艳锋

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 71-77.

PDF(1415 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1415 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 71-77. DOI: 10.19912/j.0254-0096.tynxb.2023-0317

基于自恢复型下垂控制的微电网运行控制策略研究

  • 田春胜1, 任永峰1, 胡志帅1, 孟庆天1, 陈建1, 张艳锋2
作者信息 +

RESEARCH ON MICROGRID OPERATION CONTROL STRATEGY BASED ON SELF-RECOVERY DROOP CONTROL

  • Tian Chunsheng1, Ren Yongfeng1, Hu Zhishuai1, Meng Qingtian1, Chen Jian1, Zhang Yanfeng2
Author information +
文章历史 +

摘要

针对微电网并、离网模式切换、微电源突变以及负荷扰动导致的系统频率和电压波动问题,提出频率、电压自恢复型下垂控制策略。首先,基于传统下垂控制引入频率差和电压差作为反馈环节,建立储能单元自恢复型下垂控制模型。其次,通过伯德图对自恢复型和传统型下垂控制系数在不同频段范围内的性能进行对比分析。自恢复型下垂控制因采用PI控制和引入修正下垂系数因子使系统具备较好的频率和电压自恢复效果,提升动态调整能力,表现出较好的适应性。最后,基于Matlab/Simulink平台建立35 kV风光储微电网模型,通过时域仿真实验验证自恢复型下垂控制策略的有效性。

Abstract

For the problem of system frequency and voltage fluctuations caused by the switching of grid-connected and off-grid modes, the mutation of micro-source and the disturbance of load conditions, the self-recovery droop control strategy of frequency and voltage is proposed. Firstly, the self-recovery droop control model of energy storage unit is established based on the traditional droop control by introducing frequency difference and voltage difference as feedback links. Secondly, the performance of self-recovery and traditional droop control coefficients are compared and analyzed in different frequency bands by Bode diagram. The self-recovery droop control has better effect of system frequency and voltage self-recovery due to the adopting of PI control and the introduction of correction droop coefficient factors, which improves the dynamic adjustment capability and shows better adaptability. Finally, a 35 kV wind-solar-storage microgrid model is established based on Matlab/Simulink, and the effectiveness of the self-recovery droop control strategy is verified by time-domain simulation experiments.

关键词

微电网 / 并、离网 / 自恢复型下垂控制 / 伯德图 / 风光储

Key words

microgrid / grid-connected and off-grid / self-recovery droop control / Bode diagram / wind-solar-storage

引用本文

导出引用
田春胜, 任永峰, 胡志帅, 孟庆天, 陈建, 张艳锋. 基于自恢复型下垂控制的微电网运行控制策略研究[J]. 太阳能学报. 2024, 45(8): 71-77 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0317
Tian Chunsheng, Ren Yongfeng, Hu Zhishuai, Meng Qingtian, Chen Jian, Zhang Yanfeng. RESEARCH ON MICROGRID OPERATION CONTROL STRATEGY BASED ON SELF-RECOVERY DROOP CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 71-77 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0317
中图分类号: TM464   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 王佳惠, 牛玉广, 陈玥, 等. 计及火电深度调峰的高比例可再生能源电力系统日前优化调度研究[J]. 太阳能学报, 2023, 44(1): 493-499.
WANG J H, NIU Y G, CHEN Y, et al.Research on day-ahead optimal dispatching of high-proportion renewable energy power system considering deep peak load regulation of thermal power[J]. Acta energiae solaris sinica, 2023, 44(1): 493-499.
[3] 赵剑波, 王蕾. “十四五”构建以新能源为主体的新型电力系统[J]. 中国能源, 2021, 43(5): 17-21.
ZHAO J B, WANG L.Research on the new power system with new energy as the main body during the "14th five-year plan"[J]. Energy of China, 2021, 43(5): 17-21.
[4] 薛阳, 黄薪操, 席东翔, 等. 基于叠加频率的直流微电网改进下垂控制策略研究[J]. 太阳能学报, 2022, 43(9): 461-467.
XUE Y, HUANG X C, XI D X, et al.Research on improved droop control strategy of DC microgrid based on superimposed frequency[J]. Acta energiae solaris sinica, 2022, 43(9): 461-467.
[5] WANG R, HSU S C, ZHENG S, et al.Renewable energy microgrids: economic evaluation and decision making for government policies to contribute to affordable and clean energy[J]. Applied energy, 2020, 274: 59-75.
[6] 于东霞, 张建华, 王晓燕, 等. 并网型风光储互补发电系统容量优化配置[J]. 电力系统及其自动化学报, 2019, 31(10): 59-65.
YU D X, ZHANG J H, WANG X Y, et al.Optimal capacity configuration of grid-connected wind-PV-storage hybrid power generation system[J]. Proceedings of the CUS-EPSA, 2019, 31(10): 59-65.
[7] 张泽华, 宋桂英, 侯明宣, 等. 基于无源性的直流微电网并联变换器控制策略[J]. 太阳能学报, 2022, 43(11): 501-507.
ZHANG Z H, SONG G Y, HOU M X, et al.Control strategy of parallel converters in DC microgrid based on passivity[J]. Acta energiae solaris sinica, 2022, 43(11): 501-507.
[8] 杨茂, 王金鑫. 考虑可再生能源出力不确定的孤岛型微电网优化调度[J]. 中国电机工程学报, 2021, 41(3): 973-985.
YANG M, WANG J X.Optimal scheduling of islanded microgrid considering uncertain output of renewable energy[J]. Proceedings of the CSEE, 2021, 41(3): 973-985.
[9] SKIPAREV V, MACHLEV R, CHOWDHURY N R, et al.Virtual inertia control methods in islanded microgrids[J]. Energies, 2021, 14(6): 1562.
[10] 汪亮, 彭勇刚, 吴韬, 等. 光储交流微电网孤岛模式下的改进型主从控制[J]. 高电压技术, 2020, 46(10): 3530-3541.
WANG L, PENG Y G, WU T, et al.Improved master-slave control for islanded AC microgrid with PV and energy storage systems[J]. High voltage engineering, 2020, 46(10): 3530-3541.
[11] 张纯江, 徐菁远, 庆宏阳, 等.主从结构微电网逆变器离网全过程平滑切换控制策略[J]电力系统自动化, 2022, 46(23): 125-133.
ZHANG C J, XU J Y, QING H Y, et al.Seamless transferring control strategy for master-slave microgrid inverter in whole off-grid process[J]. Automation of electric power systems, 2022, 46(23): 125-133.
[12] 毕永健, 徐丙垠, 赵艳雷, 等.同步定频微电网的并网/孤岛无缝切换控制策略[J]. 电网技术, 2022, 46(3): 923-933.
BI Y J, XU B Y, ZHAO Y L, et al.Seamless transfer control strategy between grid-connected and islanding operation for synchronous fixed-frequency microgrid[J]. Power system technology, 2022, 46(3): 923-933.
[13] 朱珊珊, 汪飞, 郭慧, 等.直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344.
ZHU S S, WANG F, GUO H, et al.Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344.
[14] 刘盈杞, 彭克, 张新慧, 等.基于摄动理论的直流微电网下垂系数优化方法[J]. 电力系统自动化, 2022, 46(23): 94-101.
LIU Y Q, PENG K, ZHANG X H, et al.Optimization method of droop coefficient for DC microgrid based on perturbation theory[J]. Automation of electric power systems, 2022, 46(23): 94-101.
[15] 郑济林, 王军, 孙章, 等.一致性算法下光储直流微网改进下垂控制[J]. 电力系统及其自动化学报, 2022, 34(4): 116-125.
ZHENG J L, WANG J, SUN Z, et al.Improved droop control of PV energy storage DC microgrid based on consensus algorithm[J]. Proceedings of the CSU-EPSA, 2022, 34(4): 116-125.
[16] ZHANG M Q, YUAN X M, HU J B.Inertia and primary frequency provisions of PLL-synchronized VSC HVDC when attached to islanded AC system[J]. IEEE transactions on power systems, 2018, 33(4): 4179-4188.
[17] 颜丽, 米阳, 孙威, 等. 基于改进下垂控制的孤岛交流微电网无功分配研究[J]. 太阳能学报, 2021, 42(8): 7-15.
YAN L, MI Y, SUN W, et al.Reactive power distribution control strategy in islanded AC microgrid based on improved droop control[J]. Acta energiae solaris sinica, 2021, 42(8): 7-15.
[18] 柴秀慧, 张纯江, 赵晓君, 等. 基于自恢复下垂的分布式电源主动同步控制及参数优化[J]. 电力系统自动化, 2020, 44(19): 128-133.
CHAI X H, ZHANG C J, ZHAO X J, et al.Self-recovery droop based active synchronization control and parameter optimization of distributed generator[J]. Automation of electric power systems, 2020, 44(19): 128-133.
[19] LIU B J, WU T, LIU Z, et al.A small-AC-signal injection-based decentralized secondary frequency control for droop-controlled islanded microgrids[J]. IEEE transactions on power electronics, 2020, 35(11): 11634-11651.
[20] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806.
LIU Z W, MIAO S H, FAN Z H, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806.

基金

国家自然科学基金(52367022; 51967016); 内蒙古自治区重点研发和成果转化项目(2023YFHH0077); 内蒙古自治区科技创新重大示范工程“揭榜挂帅”项目(2023JBGS0013)

PDF(1415 KB)

Accesses

Citation

Detail

段落导航
相关文章

/