富缺陷Ru纳米片驱动高分散Pt催化剂增强电催化析氢性能

王乾森, 程庆庆, 李军, 杨辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 14-19.

PDF(1721 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1721 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 14-19. DOI: 10.19912/j.0254-0096.tynxb.2023-0318

富缺陷Ru纳米片驱动高分散Pt催化剂增强电催化析氢性能

  • 王乾森1,2, 程庆庆1, 李军1, 杨辉1,2
作者信息 +

DEFECTS-RICH Ru NANOPLATE DRIVED HIGHLY DISPERSED Pt ATOMS TO BOOST HYDROGEN EVOLUTION REACTION

  • Wang Qiansen1,2, Cheng Qingqing1, Li Jun1, Yang Hui1,2
Author information +
文章历史 +

摘要

采用无电沉积方法,以富缺陷片状Ru纳米颗粒(Ru NPs)为基底,制备出高度分散Pt负载在Ru表面的催化剂(Ru NPs@Pt)。单电子顺磁共振实验证明了缺陷Ru的存在,X射线衍射和透射电镜的结果证实了高分散原子或亚纳米Pt的存在。所制备的电催化剂HER交换电流密度高达2.39 mA/cm2,明显高于商业化Pt/C;50 mV过电位下质量活性高达32.34 A/mgPt,是商业化Pt/C的9.37倍,且在低载量(2 μg/cm2)下表现出远超商业化Pt/C的稳定性,证明了缺陷Ru基底对Pt电催化性能及耐久性的提升作用。

Abstract

Platinum (Pt) is the state-of-the-art electrocatalyst towards hydrogen evolution reaction (HER),but its atom-utilization efficiency and durability need to be further improved. In this work, we prepared the highly dispersed Pt atoms supported on defects-rich Ru nanoparticles substrate (Ru NPs@Pt) by substrate-enhanced electroless deposition method. The results of single electron paramagnetic resonance confirm the existence of the defects on Ru NPs substrate and the X-ray diffraction combined with transmission electron microscopy reveals the highly dispersed Pt atoms. Exchange current density of HER on the Ru NPs@Pt is up to 2.39 mA/cm2, which is significantly higher than that of commercial Pt/C, demonstrating the boosted HER intrinsic activity. Mass activity is as high as 32.34 A/mgPt that is 9.37 times higher than that of Pt/C at an overpotential of 50 mV. Significantly, the Ru NPs@Pt delivers the greatly enhanced durability in comparison with the Pt/C one even under the ultralow Pt loading (2 μg/cm2), indicating that the defects-rich Ru NPs substrate could improve the electrocatalytic activity and durability of Pt simultaneously.

关键词

电催化 / 析氢反应 / 缺陷 / 耐久性 / Pt

Key words

electrocatalysis / hydrogen evolution reaction / defect / durability / Pt

引用本文

导出引用
王乾森, 程庆庆, 李军, 杨辉. 富缺陷Ru纳米片驱动高分散Pt催化剂增强电催化析氢性能[J]. 太阳能学报. 2024, 45(9): 14-19 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0318
Wang Qiansen, Cheng Qingqing, Li Jun, Yang Hui. DEFECTS-RICH Ru NANOPLATE DRIVED HIGHLY DISPERSED Pt ATOMS TO BOOST HYDROGEN EVOLUTION REACTION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 14-19 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0318
中图分类号: TM911.4   

参考文献

[1] JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
[2] WANG H, GAO L J.Recent developments in electrochemical hydrogen evolution reaction[J]. Current opinion in electrochemistry, 2018, 7: 7-14.
[3] WANG D Y, GONG M, CHOU H L, et al.Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American chemical society, 2015, 137(4): 1587-1592.
[4] 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization”background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[5] 程庆庆, 陈驰, 邹亮亮, 等. 当前实用和未来发展Pt-非Pt氧还原电催化剂研究进展[J]. 太阳能学报, 2022, 43(6): 335-344.
CHENG Q Q, CHEN C, ZOU L L, et al.Advances in current practical and future development of Pt-Non-Pt oxygen reduction reaction electrocatalyst[J]. Acta energiae solaris sinica, 2022, 43(6): 335-344.
[6] DIGRASKAR R V, SAPNER V S, MALI S M, et al.CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction[J]. ACS omega, 2019, 4(4): 7650-7657.
[7] PAUL R, ZHU L, CHEN H, et al.Recent advances in carbon-based metal-free electrocatalysts[J]. Advanced materials, 2019, 31(31): e1806403.
[8] ZHANG W, ZHENG W T.Single atom excels as the smallest functional material[J]. Advanced functional materials, 2016, 26(18): 2988-2993.
[9] FLYTZANI-STEPHANOPOULOS M, GATES B C.Atomically dispersed supported metal catalysts[J]. Annual review of chemical and biomolecular engineering, 2012, 3: 545-574.
[10] SHI Y T, ZHAO C Y, WEI H S, et al.Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization[J]. Advanced materials, 2014, 26(48): 8147-8153.
[11] SIBURIAN R, KONDO T, NAKAMURA J.Size control to a sub-nanometer scale in platinum catalysts on graphene[J]. The journal of physical chemistry C, 2013, 117(7): 3635-3645.
[12] GAO C, LOW J X, LONG R, et al.Heterogeneous single-atom photocatalysts: fundamentals and applications[J]. Chemical reviews, 2020, 120(21): 12175-12216.
[13] ZHANG Q Q, GUAN J Q.Single-atom catalysts for electrocatalytic applications[J]. Advanced functional materials, 2020, 30(31): 2000768.
[14] JI S F, CHEN Y J, WANG X L, et al.Chemical synthesis of single atomic site catalysts[J]. Chemical reviews, 2020, 120(21): 11900-11955.
[15] ZHU C Z, FU S F, SHI Q R, et al.Single-atom electrocatalysts[J]. Angewandte chemie (international Ed in English), 2017, 56(45): 13944-13960.
[16] LI X Y, RONG H P, ZHANG J T, et al.Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance[J]. Nano research, 2020, 13(7): 1842-1855.
[17] LIU J Y.Catalysis by supported single metal atoms[J]. ACS catalysis, 2017, 7(1): 34-59.
[18] LIU G L, ROBERTSON A W, LI M M J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature chemistry, 2017, 9(8): 810-816.
[19] HAN B, GUO Y L, HUANG Y K, et al.Strong metal-support interactions between Pt single atoms and TiO2[J]. Angewandte chemie (international Ed in English), 2020, 59(29): 11824-11829.
[20] CHENG X, LI Y H, ZHENG L R, et al.Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction[J]. Energy & environmental science, 2017, 10(11): 2450-2458.
[21] LI M F, DUANMU K N, WAN C Z, et al.Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature catalysis, 2019, 2(6): 495-503.
[22] CHENG Q Q, HU C G, WANG G L, et al.Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of the American chemical society, 2020, 142(12): 5594-5601.
[23] SONG Y, JOHNSON D, PENG R, et al.A physical catalyst for the electrolysis of nitrogen to ammonia[J]. Science advances, 2018, 4(4): e1700336.

基金

科技部重点研发计划(2021YFB4000200); 国家自然科学基金(22002184)

PDF(1721 KB)

Accesses

Citation

Detail

段落导航
相关文章

/