基于多气象类型加权和改进高斯混合模型的光伏出力超短期概率预测

赵洪山, 孙承妍, 温开云

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 567-576.

PDF(1838 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1838 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 567-576. DOI: 10.19912/j.0254-0096.tynxb.2023-0328

基于多气象类型加权和改进高斯混合模型的光伏出力超短期概率预测

  • 赵洪山, 孙承妍, 温开云
作者信息 +

ULTRA-SHORT-TERM PROBABILITY PREDICTION OF PV OUTPUT BASED ON MULTI-WEATHER-TYPE-WEIGHTED AND IMPROVED GAUSSIAN MIXTURE MODEL

  • Zhao Hongshan, Sun Chengyan, Wen Kaiyun
Author information +
文章历史 +

摘要

提出一种多气象类型加权和改进高斯混合模型,可实现对光伏出力提前15 min的超短期概率预测。首先,依据气象特征将历史数据划分为若干气象类型,然后,构建改进高斯混合模型获得每个气象类型出力数据的概率分布,其次,构建隶属度函数量化待预测时刻气象特征对于各气象类型的相似程度,最后,根据隶属度对各气象类型的概率分布加权。以实际光伏电站数据进行算例分析,结果表明相较于单一气象类型,多气象类型加权模型的MAPE平均减少16.87%,ACD平均提升10.45%,AW平均下降2.49%。

Abstract

This paper proposes a PV output ultra-short term probability prediction method based on multi-weather-type-weighted and improved gaussian mixture model, which can realize ultra-short-term probability prediction of photovoltaic output 15 minutes ahead. Firstly, the historical data is divided into several meteorological types according to the meteorological characteristics. And then, the improved Gaussian mixture model is constructed to obtain the probability distribution of each meteorological type. Thirdly, the membership function is constructed to quantify the similarity degree of the meteorological characteristics to each meteorological type with the time to be predicted. Finally, the probability distribution of each meteorological type is weighted according to the membership. Taking the actual PV power station data as an example, the results show that compared with methods with a single meteorological type, the weighted model of multiple meteorological types has an average reduction of 16.87% in MAPE, an average increase of 10.45% in ACD, and an average decrease of 2.49% in AW.

关键词

光伏出力 / 概率预测 / 超短期 / 多气象类型加权 / 改进高斯混合模型

Key words

photovoltaic power output / probabilistic forecast / ultra-short-term / multi-weather-type-weighted / improved Gaussian mixture model

引用本文

导出引用
赵洪山, 孙承妍, 温开云. 基于多气象类型加权和改进高斯混合模型的光伏出力超短期概率预测[J]. 太阳能学报. 2024, 45(7): 567-576 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0328
Zhao Hongshan, Sun Chengyan, Wen Kaiyun. ULTRA-SHORT-TERM PROBABILITY PREDICTION OF PV OUTPUT BASED ON MULTI-WEATHER-TYPE-WEIGHTED AND IMPROVED GAUSSIAN MIXTURE MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 567-576 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0328
中图分类号: TM615   

参考文献

[1] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[2] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[3] 王俊杰, 毕利, 张凯, 等. 基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J]. 太阳能学报, 2023, 44(7): 168-174.
WANG J J, BI L, ZHANG K, et al.Short-term photovoltaic power generation prediction based on multi-feature fusion and XGBoost-LightGBM-ConvLSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 168-174.
[4] 康重庆, 张宁. “高比例可再生能源电力系统规划与运行”专题特约主编寄语[J]. 电工技术学报, 2019, 34(10): 1985-1986.
KANG C Q, ZHANG N.Message from special editor-in-chief on “planning and operation of high-proportion renewable energy power system”[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1985-1986.
[5] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[6] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[7] SHENG H M, XIAO J, CHENG Y H, et al.Short-term solar power forecasting based on weighted Gaussian process regression[J]. IEEE transactions on industrial electronics, 2018, 65(1): 300-308.
[8] 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16.
WAN C, SONG Y H.Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of electric power systems, 2021, 45(1): 2-16.
[9] 黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4): 1144-1157.
LI J H, LUO Y C, YANG S H, et al.Review of uncertainty forecasting methods for renewable energy power[J]. High voltage engineering, 2021, 47(4): 1144-1157.
[10] SARKAR S, AJJARAPU V.MW resource assessment model for a hybrid energy conversion system with wind and solar resources[J]. IEEE transactions on sustainable energy, 2011, 2(4): 383-391.
[11] 魏勇, 李浩然, 范雪峰, 等. 计及日照强度时间周期特征的光伏并网系统风险评估方法[J]. 电网技术, 2018, 42(8): 2562-2569.
WEI Y, LI H R, FAN X F, et al.Risk assessment method of PV integrated power system considering time periodic characteristics of solar irradiance[J]. Power system technology, 2018, 42(8): 2562-2569.
[12] ZIADI Z, OSHIRO M, SENJYU T, et al.Optimal voltage control using inverters interfaced with PV systems considering forecast error in a distribution system[J]. IEEE transactions on sustainable energy, 2014, 5(2): 682-690.
[13] FATEMI S A, KUH A, FRIPP M.Parametric methods for probabilistic forecasting of solar irradiance[J]. Renewable energy, 2018, 129: 666-676.
[14] GOLESTANEH F, PINSON P, GOOI H B.Very short-term nonparametric probabilistic forecasting of renewable energy generation-with application to solar energy[J]. IEEE transactions on power systems, 2016, 31(5): 3850-3863.
[15] WAN C, LIN J, SONG Y H, et al.Probabilistic forecasting of photovoltaic generation: an efficient statistical approach[J]. IEEE transactions on power systems, 2017, 32(3): 2471-2472.
[16] 颜伟, 任洲洋, 赵霞, 等. 光伏电源输出功率的非参数核密度估计模型[J]. 电力系统自动化, 2013, 37(10): 35-40.
YAN W, REN Z Y, ZHAO X, et al.Probabilistic photovoltaic power modeling based on nonparametric kernel density estimation[J]. Automation of electric power systems, 2013, 37(10): 35-40.
[17] 董雷, 周文萍, 张沛, 等. 基于动态贝叶斯网络的光伏发电短期概率预测[J]. 中国电机工程学报, 2013, 33(增刊1): 38-45.
DONG L, ZHOU W P, ZHANG P, et al.Short-term photovoltaic output forecast based on dynamic Bayesian network theory[J]. Proceedings of the CSEE, 2013, 33(S1): 38-45.
[18] 高元海, 徐潇源, 严正. 基于多维高斯混合模型的电力系统不确定性建模方法[J]. 中国电机工程学报, 2023, 43(1): 37-47.
GAO Y H, XU X Y, YAN Z.Power system uncertainty modeling based on multivariate gaussian mixture model[J]. Proceedings of the CSEE, 2023, 43(1): 37-47.
[19] 周帆, 郑常宝, 胡存刚, 等. 基于高斯混合模型的光伏发电功率概率区间预测[J]. 科学技术与工程, 2021, 21(24):10284-10290.
ZHOU F, ZHENG C B, HU C G, et al.Prediction of photovoltaic power generation probability interval based on Gaussian mixture model[J]. Science technology and engineering, 2021, 21(24): 10284-10290.
[20] 刘洁, 林舜江, 梁炜焜, 等. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47(1): 266-274.
LIU J, LIN S J, LIANG W K, et al.Short-term probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power system technology, 2023, 47(1): 266-274.
[21] 何锋, 章义军, 章建华, 等. 基于相似日和分位数回归森林的光伏发电功率概率密度预测[J]. 热力发电, 2019, 48(7): 64-69.
HE F, ZHANG Y J, ZHANG J H, et al.Forecasting of photovoltaic power generation probability density based on similar day and quantile regression forests[J]. Thermal power generation, 2019, 48(7): 64-69.
[22] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4384.
WANG K Y, DU H D, JIA R, et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High voltage engineering, 2022, 48(11): 4372-4384.
[23] 周荫清. 随机过程理论[M]. 3版. 北京: 北京航空航天大学出版社, 2013: 214-239.
ZHOU Y Q.Stochastic process theory[M]. 3rd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2013: 214-239.

基金

国家电网公司总部科技项目(5700-202255222A-1-1-ZN)

PDF(1838 KB)

Accesses

Citation

Detail

段落导航
相关文章

/