提出一种具有优异导热性能和防漏性能的新型复合相变材料(CPCM),采用膨胀石墨(EG)与硅藻土的联合互交网格,可显著提高相变材料的吸附能力和导热性能。测试结果表明,含10%硅藻土和6% EG的样品14在50 ℃下加热5 h,表面仍无渗漏现象,同时PEG含量达到90%,且在热循环测试中也呈现出优良的稳定性;将电池与样品14耦合后,测试电池在8种工作模式下的温度变化,在2C(C为电池充放电能力倍率)模式下,当电池在较高初始温度(30 ℃)下工作时,其最高工作温度仍可控制在40 ℃以下,每个电池之间的温差可限制在约2 ℃;同时样品14在低温下可为电池系统提供优异的保温性能,电池的放电效率提高约16.07%,当T0=30 ℃时,在1C模式下,电池放电效率达到91.67%。
Abstract
At present, the lithium battery thermal management system using phase change materials (PCM) has been widely used, but how to solve the problems of leakage and low thermal conductivity of phase change materials is still a wide range of research prospects. Especially in high power working condition, the temperature of the battery is still not well controlled. In this paper, a new type of composite phase change material (CPCM) with excellent thermal conductivity and leak-proof performance is proposed. The joint cross-cross mesh of expanded graphite (EG) and diatomite can significantly improve the adsorption capacity and thermal conductivity of the CPCM. The results show that the CPCM containing 10% diatomite and 6% EG is heated at 50 ℃ for 5 h and there is still no surface leakage, the PEG content reach 90%. The samples also show excellent stability in the thermal cycle test. After coupling the battery to the CPCM, we test the temperature variation of the battery under 8 different operating modes. Especially in 2C mode, when the battery is operating at a higher initial temperature (30 ℃), its maximum operating temperature can still be controlled below 40 ℃, and the temperature difference between each battery can be limited to about 2 ℃. At the same time, it is found that CPCM can provide excellent insulation performance for battery system at low temperature. After coupling with the CPCM, the discharge efficiency of the battery is improved by about 16.07%. When T0=30 ℃, the battery discharge efficiency reaches 91.67% at 1C mode. These excellent physical properties can enable CPCM-lithium battery composite model to be applied in a wider range of fields.
关键词
相变材料 /
电池管理系统 /
导热 /
高防漏 /
电池效率
Key words
phase change materials /
battery management system /
thermal conductivity /
high leak proof /
cell efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WENG J W, HE Y P, OUYANG D, et al.Honeycomb-inspired design of a thermal management module and its mitigation effect on thermal runaway propagation[J]. Applied thermal engineering, 2021, 195: 117147.
[2] DENG J, LI X X, ZHANG G Q, et al.Flexible composite phase-change material with shape recovery and antileakage properties for battery thermal management[J]. ACS applied energy materials, 2021, 4(12): 13890-13902.
[3] ZHI M Y, FAN R, YANG X, et al.Recent research progress on phase change materials for thermal management of lithium-ion batteries[J]. Journal of energy storage, 2022, 45: 103694.
[4] MURALI G, SRAVYA G S N, JAYA J, et al. A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM[J]. Renewable and sustainable energy reviews, 2021, 150: 111513.
[5] LIU Y, ZHENG R W, LI J.High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: critical review[J]. Renewable and sustainable energy reviews, 2022, 168: 112783.
[6] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[7] 陈之帆, 孙志高, 汤小蒙, 等. 纳米Fe2O3/硬脂酸/十八醇纳米复合相变蓄热材料的性能研究[J]. 太阳能学报, 2021, 42(3): 422-427.
CHEN Z F, SUN Z G, TANG X M, et al.Study on properties of ferumoxytol/stearic acid/stearyl alcohol composite phase change heat storage material[J]. Acta energiae solaris sinica, 2021, 42(3): 422-427.
[8] WU M Q, LI T X, WANG P F, et al.Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management[J]. Small, 2022, 18(9): 2105647.
[9] LI B M, SHU D, WANG R F, et al.Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable energy, 2020, 145: 84-92.
[10] KARAMAN S, KARAIPEKLI A, SAR A, et al.Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar energy materials and solar cells, 2011, 95(7): 1647-1653.
[11] 蒋达华, 杨昊天, 徐玉珍, 等. 硅藻土定形相变材料的制备及影响因素研究[J]. 非金属矿, 2021, 44(5): 19-22.
JIANG D H, YANG H T, XU Y Z, et al.Preparation and influencing factors of diatomite shape phase change material[J]. Non-metallic mines, 2021, 44(5): 19-22.
[12] RAO Z H, ZHANG G T, XU T T, et al.Experimental study on a novel form-stable phase change materials based on diatomite for solar energy storage[J]. Solar energy materials and solar cells, 2018, 182: 52-60.
[13] 聂瑞, 王飞腾, 陈丽红. 建筑用相变微胶囊/硅藻土复合材料的制备及性能研究[J]. 合成材料老化与应用, 2021, 50(4): 97-98, 113.
NIE R, WANG F T, CHEN L H.Preparation and properties of phase change microcapsules/diatomite composites for building[J]. Synthetic materials aging and application, 2021, 50(4): 97-98, 113.
[14] ZHANG Z, DUAN Z Y, CHEN D M, et al.Sodium acetate trihydrate-based composite phase change material with enhanced thermal performance for energy storage[J]. Journal of energy storage, 2021, 34: 102186.
[15] 闫全英, 王晨羽, 梁高金, 等. 用添加剂强化有机相变材料导热性能的研究[J]. 太阳能学报, 2021, 42(9): 205-209.
YAN Q Y, WANG C Y, LIANG G J, et al.Study on enhancing thermal conductivity of organic phase change materials with additives[J]. Acta energiae solaris sinica, 2021, 42(9): 205-209.
[16] FU W W, ZOU T, LIANG X H, et al.Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate-urea/expanded graphite for radiant floor heating system[J]. Applied thermal engineering, 2018, 138: 618-626.
[17] 何起帆, 吴闽强, 李廷贤, 等. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545.
HE Q F, WU M Q, LI T X, et al.Preparation and thermophysical properties of octadecane/OBC/EG composite shaped phase change material[J]. CIESC journal, 2021, 72(S1): 539-545.
[18] 张娇. 膨胀石墨/石蜡复合相变蓄热材料的制备及性能研究[D]. 西安: 西安建筑科技大学, 2016.
ZHANG J.Preparation and properties of expanded graphite/paraffin composite phase change heat storage materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
[19] 李文琛, 蔡一凡, 严泰森, 等. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023.
LI W C, CAI Y F, YAN T S, et al.Preparation and thermal storage properties of sodium acetate trihydrate-expanded graphite as phase change composite[J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1015-1023.
[20] 赵万方. 定型相变材料回填的地埋管系统间歇运行模拟分析[D]. 合肥: 合肥工业大学, 2020.
ZHAO W F.Simulation analysis of intermittent operation of buried pipe system with shaped phase change material backfill[D]. Hefei: Hefei University of Technology, 2020.
基金
安徽省重点研发计划(S202203f07020001); 中央高校基本科研业务费项目(PA2021KCPY0029); 研究生学术创新(2022xscx022)