中国典型地形风能资源的湍流特征分析

贺园园, 方艳莹, 程雪玲, 朱蓉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 724-734.

PDF(21494 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(21494 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 724-734. DOI: 10.19912/j.0254-0096.tynxb.2023-0343

中国典型地形风能资源的湍流特征分析

  • 贺园园1,2, 方艳莹3, 程雪玲1,4, 朱蓉5
作者信息 +

STUDY ON TURBULENCE CHARACTERISTICS OF WIND ENERGY RESOURCES IN CHINA'S TYPICAL TERRAIN

  • He Yuanyuan1,2, Fang Yanying3, Cheng Xueling1,4, Zhu Rong5
Author information +
文章历史 +

摘要

选取4种风能开发利用的典型地形,对其大气边界层风场特别是湍流场的特征进行分析。通过分析不同下垫面无量纲方差与无量纲稳定度参数z/L的关系,表明均在风力机标准的湍流模型适用范围内。湍流动能随风速呈指数增长,不同稳定度下指数差异明显。湍流动能的垂直变化,除受稳定度影响外,还与下垫面有关。东海塘沿海局地平坦地形和锡林浩特平坦草原下垫面,湍流动能随高度变化较小;鄱阳湖湖陆交界复杂下垫面,近地面湍流动能明显增大,随着高度的增加,湍流动能迅速下降;河北尚义起伏的中山丘陵下垫面,地形使下层湍流动能随高度减小,上层湍流动能随高度增大。摩擦速度廓线与湍流动能廓线基本一致,但其最大值并不一定在地表附近。

Abstract

In this paper, four typical terrains for wind energy utilization are selected to analyze the wind field characteristics in the atmospheric boundary layer, especially for turbulent fields. By analyzing the relationship between dimensionless variance and dimensionless stability parameter z/L for different underlying surfaces, it is shown that they are within the applicable range of the turbulence model in IEC. The turbulent kinetic energy increases exponentially with wind speed, and the exponential difference is obvious under different stability levels. In addition to the influence of stability, the vertical change in turbulent kinetic energy is also related to the underlying surface. Over the local flat surface of the Donghaitang coast and the flat grassland area of Xilinhot, the turbulent kinetic energy decreases less with height. Over the complex terrain of the lake-land interface of Poyang Lake, the kinetic energy of turbulence near the surface increases significantly, and it decreases rapidly with height. Over the undulating middle mountain hills, the terrain reduces the turbulent kinetic energy of the lower layer, and the upper layer increases with height. The friction velocity profile is basically consistent with the turbulent kinetic energy profile, but its maximum is not necessarily near the surface.

关键词

大气边界层 / 风能 / 大气湍流 / 风能资源 / 湍流动能 / 下垫面

Key words

atmospheric boundary layer / wind energy / atmospheric turbulence / wind energy resouces / turbulent kinetic energy / underlying surface

引用本文

导出引用
贺园园, 方艳莹, 程雪玲, 朱蓉. 中国典型地形风能资源的湍流特征分析[J]. 太阳能学报. 2024, 45(7): 724-734 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0343
He Yuanyuan, Fang Yanying, Cheng Xueling, Zhu Rong. STUDY ON TURBULENCE CHARACTERISTICS OF WIND ENERGY RESOURCES IN CHINA'S TYPICAL TERRAIN[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 724-734 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0343
中图分类号: P404   

参考文献

[1] LETTAU H.The O'Neill experiment of 1953[J]. Boundary-layer meteorology, 1990, 50(1/2/3/4): 1-9.
[2] KAIMAL J C, WYNGAARD J C.The Kansas and Minnesota experiments[J]. Boundary-layer meteorology, 1990, 50(1/2/3/4): 31-47.
[3] BUSINGER J A, WYNGAARD J C, IZUMI Y, et al.Flux-profile relationships in the atmospheric surface layer[J]. Journal of the atmospheric sciences, 1971, 28(2): 181-189.
[4] LEMONE M A, GROSSMAN R L, COULTER R L, et al.Land-atmosphere interaction research, early results, and opportunities in the walnut river watershed in Southeast Kansas: CASES and ABLE[J]. Bulletin of the American Meteorological Society, 2000, 81(4): 757-779.
[5] CLARKE R H, DYER A J, BROOK R R, et al.The Wangara experiment: boundary layer data[C]//Proceedings of the Techenical paper No. 19, Division of Meteorological Physics, CSIRO, Australia, 1971.
[6] HICKS B B.Wind profile relationships from the ‘Wangara' experiment[J]. Quarterly journal of the Royal Meteorological Society, 1976, 102(433): 535-551.
[7] 胡隐樵. 黑河实验(HEIFE)能量平衡和水汽输送研究进展[J]. 地球科学进展, 1994, 9(4): 30-34.
HU Y Q.Research advance about the energy budget and transportation of water vapour in the HEIFE area[J]. Advence in earth sciences, 1994, 9(4): 30-34.
[8] 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
XU X D, CHEN L S.Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of applied meteorological science, 2006, 17(6): 756-772.
[9] 张人禾, 徐祥德. 青藏高原及东缘新一代大气综合探测系统应用平台: 中日合作JICA项目[J]. 中国工程科学, 2012, 14(9): 102-112.
ZHANG R H, XU X D.An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region—a China-Japan cooperative JICA Project[J]. Engineering sciences, 2012, 14(9): 102-112.
[10] 左薇, 李惠民, 芮晓明, 等. 风电场典型复杂地形的数值模拟研究[J]. 太阳能学报, 2018, 39(11): 3202-3208.
ZUO W, LI H M, RUI X M, et al.Numerical simulation of typical complex terrain of wind farms[J]. Acta energiae solaris sinica, 2018, 39(11): 3202-3208.
[11] 赵子涵, 李朝, 肖仪清, 等. 基于NWP/CFD嵌套的复杂地形风场模拟研究[J]. 太阳能学报, 2021, 42(2): 205-210.
ZHAO Z H, LI C, XIAO Y Q, et al.Wind field simulation over complex terrain by coupling NWP/CFD approach[J]. Acta energiae solaris sinica, 2021, 42(2): 205-210.
[12] 朱蓉, 徐红, 龚强, 等. 中国风能开发利用的风环境区划[J]. 太阳能学报, 2023, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in China[J]. Acta energiae solaris sinica, 2023, 44(3): 55-66.
[13] CONAN B, CHAUDHARI A, AUBRUN S, et al.Experimental and numerical modelling of flow over complex terrain: the Bolund hill[J]. Boundary-layer meteorology, 2016, 158(2): 183-208.
[14] SALVADOR N, REIS N C, SANTOS J M, et al.Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment[J]. Journal of meteorological research, 2016, 30(6): 998-1018.
[15] 龚玺, 朱蓉, 范广洲, 等. 内蒙古草原近地层垂直风速廓线的观测研究[J]. 气象学报, 2014, 72(4): 711-722.
GONG X, ZHU R, FAN G Z, et al.Observational study of the vertical wind profile in the Inner Mongolia grassland near-surface[J]. Acta meteorologica sinica, 2014, 72(4): 711-722.
[16] 龚玺, 朱蓉, 李泽椿. 我国不同下垫面的近地层风切变指数研究[J]. 气象, 2018, 44(9): 1160-1168.
GONG X, ZHU R, LI Z C.Study of near-surface wind shear exponents of different regions in China[J]. Meteorological monthly, 2018, 44(9): 1160-1168.
[17] 袁万, 彭秀芳, 胡煜. 大气稳定度对内陆低风速风电场发电量影响研究[J]. 太阳能学报, 2018, 39(8): 2133-2138.
YUAN W, PENG X F, HU Y.Influence of atmospheric stability on power generation of inland wind farm with low wind speed[J]. Acta energiae solaris sinica, 2018, 39(8): 2133-2138.
[18] IEC 61400-1, Wind turbines-part 1: design requirements. 3rd ed[S].
[19] KAIMAL J C, FINNIGAN J J.Atmospheric boundary layer flows: their structure and measurement[M]. New York: Oxford University Press, 1994.
[20] PANOFSKY H A, DUTTON J A.Atmospheric turbulence: models and methods for engineering applications[M]. New York: Wiley, 1984.
[21] SORBJAN Z.Structure of the atmospheric boundary layer[M]. Englewood Cliffs, NJ: Prentice Hall, 1989.
[22] STULL R B.An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988.
[23] LI Y, SADR R.Turbulence characteristics within the atmospheric surface layer of the coastal region of Qatar[J]. Boundary-layer meteorology, 2022, 184(2): 355-370.
[24] 王丙兰, 胡非, 程雪玲, 等. 边界层局地相似理论在草原下垫面的适用性检验[J]. 高原气象, 2012, 31(1): 28-37.
WANG B L, HU F, CHENG X L, et al.Suitability of local similarity of boundary layer in homogeneous grassland underlying surface[J]. Plateau meteorology, 2012, 31(1): 28-37.
[25] BI X Y, LU C, LIU C X, et al.Comparison of atmospheric turbulence characteristics over sea surface and land surface before, during, and after typhoons[J]. Atmosphere, 2022, 13(11): 1827.
[26] CHEN C.Vertical eddy diffusivity in the tropical cyclone boundary layer during landfall[J]. Atmosphere, 2022, 13(6): 982.
[27] JIA D Y, WEN J, MA Y M, et al.The warm season characteristics of the turbulence structure and transfer of turbulent kinetic energy over alpine wetlands at the source of the Yellow River[J]. Meteorology and atmospheric physics, 2018, 130(5): 529-542.
[28] RAGA G B, ABARCA S.On the parameterization of turbulent fluxes over the tropical Eastern Pacific[J]. Atmospheric chemistry and physics, 2007, 7(3): 635-643.
[29] RYU G H, KIM Y G, KWAK S J, et al.Atmospheric stability effects on offshore and coastal wind resource characteristics in South Korea for developing offshore wind farms[J]. Energies, 2022, 15(4): 1305.
[30] ZHAO Z K, GAO R Q, ZHANG J A, et al.Observations of boundary layer wind and turbulence of a landfalling tropical cyclone[J]. Scientific reports, 2022, 12: 11056.
[31] MAHRT L, SUN J L, STAUFFER D.Dependence of turbulent velocities on wind speed and stratification[J]. Boundary-layer meteorology, 2015, 155(1): 55-71.
[32] SUN J L, LENSCHOW D H, LEMONE M A, et al.The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations[J]. Boundary-layer meteorology, 2016, 160(1): 83-111.
[33] SUN J L, MAHRT L, BANTA R M, et al.Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99[J]. Journal of the atmospheric sciences, 2012, 69(1): 338-351.

基金

国家重点研发计划(2018YFB1501100)

PDF(21494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/