基于真实设计参数和环境荷载,通过PLAXIS Monopile Designer和SACS软件实现某风场机位的缩径单桩优化设计,并进行结构极限强度、结构变形、自振频率和疲劳分析计算。相比于相同上部尺寸的常规单桩基础,缩径单桩具有较大的泥面转角和水平位移,较低的竖向位移和自振频率,计算结果验证了缩径单桩基础方案的可行性,并可实现节省10.9%的用钢量。
Abstract
Based on the real design parameters and environmental load, PLAXIS Monopile Designer and SACS software were used to realize the optimal design of reduced monopile in a wind field of China. The ultimate strength, structural deformation, natural vibration frequency and fatigue analysis were carried out. The reduced monopile with the same upper size had a larger mud surface angle and horizontal displacement, and a lower vertical displacement and natural vibration frequency. The results verify the feasibility of the reduced monopile scheme, and achieve a 10.9% reduction in steel consumption.
关键词
海上风电场 /
海上风力发电机 /
海上风电结构 /
缩径单桩基础 /
结构设计
Key words
offshore wind farms /
offshore wind turbines /
offshore structures /
reduced diameter monopile /
structure design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KOOTEN G V, TIMILSINA G R.Wind power development: economics and policies[J]. Policy research working paper, 2013, 61(3): 642-652.
[2] TU W B, ZHANG L X, ZHOU Z R, et al.The development of renewable energy in resource-rich region: a case in China[J]. Renewable and sustainable energy reviews, 2011, 15(1): 856-860.
[3] JOYCE L.Global wind report 2022[R]. GWEC, 2022.
[4] 郑海, 杜伟安, 李阳春, 等. 国内外海上风电发展现状[J]. 水电与新能源, 2018, 32(6): 75-77.
ZHENG H, DU W A, LI Y C, et al.Current situation of the offshore wind power development all over the world[J]. Hydropower and new energy, 2018, 32(6): 75-77.
[5] 国家发展和改革委员会能源研究所.能源技术路线图――中国风电发展路线图2050[EB/OL].[2021-03-08].https://www.digitalelite.cn/h-nd-3810.html.
National Development and Reform Commission Energy Research Institute. Energy technology roadmap-China's wind power development roadmap2050[EB/OL]. [2021-03-08]. https://www.digitalelite.cn/h-nd-3810.html.
[6] WU X N, HU Y, LI Y, et al.Foundations of offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[7] PEIRE K, NONNEMAN H, BOSSCHEM E.Gravity base foundations for the Thornton Bank offshore wind farm[J]. Terra et aqua, 2009: 115.
[8] TABASSUM-ABBASI, PREMALATHA M, ABBASI T, et al.Wind energy: increasing deployment, rising environmental concerns[J]. Renewable and sustainable energy reviews, 2014, 31: 270-288.
[9] OH K Y, NAM W, RYU M S, et al.A review of foundations of offshore wind energy convertors: current status and future perspectives[J]. Renewable and sustainable energy reviews, 2018, 88: 16-36.
[10] 李炜, 张敏, 刘振亚, 等. 三脚架式海上风电基础结构基频敏感性研究[J]. 太阳能学报, 2015, 36(1): 90-95.
LI W, ZHANG M, LIU Z Y, et al.Fundamental structural frequency analysis for tripod-type offshore wind turbine[J]. Acta energiae solaris sinica, 2015, 36(1): 90-95.
[11] 刘军红, 王荃迪, 唐慧玲. 海上风电伞式吸力锚基础结构优化设计及承载优势分析[J]. 中国海洋大学学报,2016, 46(9): 96-101.
LIU J H,WANG Q D,TANG H L.Optimum structural design and loading advantage analysis of umbrella suction anchor foundation for offshore wind turbine[J]. Periodical of Ocean University of China,2016,46(9):96-101.
[12] 黄周泉, 吴锋, 苏静波. 海上风电桩桶复合基础的竖向承载性能研究[J]. 水力发电, 2017, 43(12): 83-86, 100.
HUANG Z Q, WU F, SU J B.Vertical bearing capacity of pile-bucket composite foundation for offshore wind turbine[J]. Water power, 2017, 43(12): 83-86, 100.
[13] NB/T 10105—2018, 海上风电场工程风电机组基础设计规范[S].
NB/T 10105—2018, Code for design of wind turbine foundations for offshore wind power projects[S].
基金
中国华能集团科技项目(HNKJ23-H18); 北京市科技新星计划(20220484046)