在单独恒定流条件下,以某一海上风电大直径单桩基础为研究对象,提出一种扰流板防冲刷结构,建立三维数值模型。基于数值模拟,研究扰流板结构对桩基础周围局部冲刷的影响机制,探讨扰流板长度L和高度H2对局部马蹄涡位置和强度的影响,分析床面剪切应力受扰流板几何的影响规律。研究发现,扰流板结构能有效地减弱局部马蹄涡强度和减小桩周海床床面剪切应力;局部马蹄涡受扰流板几何的影响呈现3种流动机制;当L/H2=1时,扰流板具有较好的冲刷防护特性。总的来说,扰流板防冲刷结构对单桩基础局部冲刷具有较好的防护效果。
Abstract
Monopile foundations have become the most common infrastructure in the field of offshore wind power due to their simple structure and convenient construction. However, they are often accompanied by local erosion of the seabed around the pile. In this study, a spoiler anti-erosion structure is proposed, and a three-dimensional numerical model is established using a large-diameter monopile foundation of offshore wind power as the research object. Based on numerical simulations, the influence of the spoiler structure on local scouring around the pile is studied under constant currents. The influence of the spoiler’s length (L) and height (H2) on the position and strength of local horseshoe vortices is discussed, and the effect of local bed shear stress is also analyzed. Results show that the spoiler structure can effectively weaken the strength of local horseshoe vortices, reduce shear stress on the bed around the monopile. The local horseshoe vortex exhibits three flow mechanisms under the influence of the spoiler’s geometry. When L/H2=1, the spoiler has better erosion protection characteristics. Overall, the spoiler structure has a good protective effect on local erosion protection and is significant for guiding the protection design of pile foundations.
关键词
海上风电 /
单桩 /
圆柱绕流 /
冲刷 /
马蹄涡 /
床面剪应力
Key words
offshore wind power /
monopile /
cylinder flow /
scouring /
horseshoe vortex /
bed surface shear stress
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG Q, TANG G Q, LU L, et al.Scour protections of collar around a monopile foundation in steady current[J]. Applied ocean research, 2021, 112: 102718.
[2] 于通顺, 唐俊辉, 刘梅梅, 等. 局部冲刷对复合筒基风电结构体系动力响应影响[J]. 太阳能学报, 2022, 43(4): 359-365.
YU T S, TANG J H, LIU M M, et al.Influence of local scour on dynamic response of wind turbine structure system with composite bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(4): 359-365.
[3] GRAF W H, YULISTIYANTO B.Experiments on flow around a cylinder; the velocity and vorticity fields[J]. Journal of hydraulic research, 1998, 36(4): 637-654.
[4] ZHAO M, CHENG L, ZANG Z P.Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents[J]. Coastal engineering, 2010, 57(8): 709-721.
[5] 陈启刚, 齐梅兰, 李金钊. 明渠柱体上游马蹄涡的运动学特征研究[J]. 水利学报, 2016, 47(2): 158-164.
CHEN Q G, QI M L, LI J Z.Kinematic characteristics of horseshoe vortex upstream of circular cylinders in open channel flow[J]. Journal of hydraulic engineering, 2016, 47(2): 158-164.
[6] WEI Q D, WANG J M, CHEN G, et al.Modification of junction flows by altering the section shapes of the cylinders[J]. Journal of visualization, 2008, 11(2): 115-124.
[7] 张楠. 自由液面流动对角区马蹄涡系的流动特性影响分析[D]. 北京: 北京交通大学, 2018.
ZHANG N.Effect of free surface flow on the horseshoe vortex system[D]. Beijing: Beijing Jiaotong University, 2018.
[8] WHITEHOUSE R J S, HARRIS J M, SUTHERLAND J, et al. The nature of scour development and scour protection at offshore windfarm foundations[J]. Marine pollution bulletin, 2011, 62(1): 73-88.
[9] SUMER B M, CHRISTIANSEN N, FREDSOE J.The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves[J]. Journal of fluid mechanics, 1997, 332(1): 41-70.
[10] SUMER B M, FREDSØE J. A review of wave/current-induced scour around pipelines[C]//Coastal Engineering 1992. Venice, Italy, 1993.
[11] SUMER B M, FREDSØE J. The mechanics of scour in the marine environment[M]. River Edge, NJ: World Scientific, 2002.
[12] ROULUND A, MUTLU SUMER B, FREDS\OE J, et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of fluid mechanics, 2005, 534: 351-401.
[13] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[14] 梁森栋. 海洋环境中结构基础冲刷防护措施及预警模型研究[D]. 北京: 清华大学, 2014.
LIANG S D.Study on scour countermeasures and forecasting for structure foundations in marine environment[D]. Beijing: Tsinghua University, 2014.
[15] 刘周明, 曹人靖. 新型扰流板结构对海上单桩基础冲刷特性影响的数值研究[C]//中国力学学会流体力学专业委员会.第十一届全国流体力学学术会议论文摘要集, 深圳, 中国, 2020.
LIU Z M, CAO R J.Numerical study on the influence of novel spoiler structure on erosion characteristics of offshore monopile foundation[C]//The 11th National Conference on Fluid Mechanics. Shenzhen, China, 2020.
[16] 华鑫. 波流耦合作用下单桩基础冲刷及防护研究[D]. 杭州: 浙江大学, 2022.
HUA X.Research on scour and protection of monopile foundation under the combined action of waves and current[D]. Hangzhou: Zhejiang University, 2022.
[17] 赵天雄. 桩周局部冲刷问题的CFD-DEM数值模拟[D]. 南京: 东南大学, 2021.
ZHAO T X.Numerical investigation on local scour based on CFD-DEM[D]. Nanjing: Southeast University, 2021.
基金
中国华能集团有限公司科技项目(HNKJ20-H54); 华能清能院研究与开发基金项目(QNYJJ22-12)