精准可靠的冷、热、电负荷预测对综合能源系统的优化运行具有重要意义,为有效提取负荷序列间存在的线性、非线性、耦合性以及不确定性等特征,该文提出一种由多元线性回归(MLR)、改进型自适应白噪声完备集成经验模态分解(ICEEMDAN)、长短时记忆(LSTM)神经网络、蒙特卡罗(MC)法相结合的多元负荷预测方法。首先,针对冷、热、电负荷分别构建MLR模型以挖掘线性特征。然后,将残差部分利用ICEEMDAN方法分解,再对重构后同一频段的各负荷残差分量建立LSTM模型,实现对非线性及耦合性的学习。最后,将MLR与LSTM结果叠加得到点预测值。与参照模型中的最优结果相比,该方法下冷、热、电负荷的R2分别提升了0.09%、0.21%、0.40%。此外,为实现对负荷不确定性的有效量化,进一步采用非参数核密度估计与MC抽样结合的方法得到预测区间结果。经算例分析,各负荷的预测区间覆盖率均大于相应的置信水平(95%、90%、85%),所提方法具有较高的预测精度及可靠性。
Abstract
Accurate and reliable cold, heat and electrical load forecasting is a prerequisite for optimal scheduling and efficient operation of integrated energy system. To effectively extract the linear, nonlinear, coupling and uncertainty characteristics existing among load sequences, this paper proposes a multiple linear regression (MLR), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), long short-time memory (LSTM) neural network, and Monte Carlo (MC) method combined with multivariate load prediction method. First, MLR models are constructed separately for cold, heat and electrical load to mine the linear features. Then, the residual components are decomposed using the ICEEMDAN method, and LSTM models are built for each load residual component in the same frequency band after the component reconstruction to realize the learning of nonlinearity and coupling. Finally, the point prediction values are acquired by summing the MLR and LSTM results. Compared with the optimal results in the reference model, the R2 of the method improves 0.09%,0.21%,and 0.40% for cold,heat,and electrical load, respectively. In addition, to achieve an effective quantification of load uncertainty, a combination of nonparametric kernel density estimation and MC sampling is further used to obtain the prediction interval results. After the example analysis, the prediction interval coverage probability of each load is greater than the corresponding confidence level (95%,90%,85%), and the proposed method has high prediction accuracy and reliability.
关键词
负荷预测 /
综合能源系统 /
模态分解 /
长短时记忆神经网络 /
蒙特卡罗
Key words
load forecasting /
integrated energy system /
mode decomposition /
long short-time memory neural network /
Monte Carlo
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李承周, 王宁玲, 窦潇潇, 等. 多能源互补分布式能源系统集成研究综述及展望[J]. 中国电机工程学报, 2023, 43(18): 7127-7149.
LI C Z, WANG N L, DOU X X, et al.Review and prospect on the system integration of distributed energy system with the complementation of multiple energy sources[J]. Proceedings of the CSEE, 2023, 43(18): 7127-7149.
[2] 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905-7924.
ZHU J Z, DONG H J, LI S L, et al.Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23): 7905-7924.
[3] 栗然, 孙帆, 丁星, 等. 考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法[J]. 电网技术, 2020, 44(11): 4121-4131.
LI R, SUN F, DING X, et al.Ultra short-term load forecasting for user-level integrated energy system considering multi-energy spatio-temporal coupling[J]. Power system technology, 2020, 44(11): 4121-4131.
[4] 鲁斌, 霍泽健, 俞敏. 基于LSTNet-Skip的综合能源系统多元负荷超短期预测[J]. 中国电机工程学报, 2023, 43(6): 2273-2283.
LU B, HUO Z J, YU M.Multi load ultra short-term forecasting of integrated energy system based on LSTNet-skip[J]. Proceedings of the CSEE, 2023, 43(6): 2273-2283.
[5] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63-70.
SUN Q K, WANG X J, ZHANG Y Z, et al.Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of electric power systems, 2021, 45(5): 63-70.
[6] 吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11): 58-66.
LYU Z L, GU J, MENG L.Short-term load forecasting for integrated energy system based on coupling features and multi-task learning[J]. Automation of electric power systems, 2022, 46(11): 58-66.
[7] VAGHEFI A, JAFARI M A, BISSE E, et al.Modeling and forecasting of cooling and electricity load demand[J]. Applied energy, 2014, 136: 186-196.
[8] FANG T T, LAHDELMA R.Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system[J]. Applied energy, 2016, 179: 544-552.
[9] 朱刘柱, 王绪利, 马静, 等. 基于小波包分解与循环神经网络的综合能源系统短期负荷预测[J]. 电力建设, 2020, 41(12): 133-140.
ZHU L Z, WANG X L, MA J, et al.Short-term load forecast of integrated energy system based on wavelet packet decomposition and recurrent neural network[J]. Electric power construction, 2020, 41(12): 133-140.
[10] 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2): 593-602.
DENG D Y, LI J, ZHANG Z Y, et al.Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power system technology, 2020, 44(2): 593-602.
[11] 付子昱. 基于负荷预测的综合能源系统混合时间尺度优化运行[D]. 北京: 华北电力大学, 2021.
FU Z Y.Hybrid-time scale optimal scheduling of integrated energy systems with load forecasting[D]. Beijing: North China Electric Power University, 2021.
[12] 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7): 352-358.
ZHAO Z, WANG X S.Ultra-short-term multi-step wind power prediction based on ceemd and improved time series model[J]. Acta energiae solaris sinica, 2020, 41(7): 352-358.
[13] 叶剑华, 曹旌, 杨理, 等. 基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J]. 电网技术, 2022, 46(7): 2610-2618, 15-18.
YE J H, CAO J, YANG L, et al. Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J]. Power system technology, 2022, 46(7): 2610-2618, 15-18.
[14] 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13): 85-94.
CHEN J P, HU Z J, CHEN W N, et al.Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of electric power systems, 2021, 45(13): 85-94.
[15] MA Z R, WANG J J, DONG F X, et al.A decomposition-ensemble prediction method of building thermal load with enhanced electrical load information[J]. Journal of building engineering, 2022, 61: 105330.
[16] DONG F X, WANG J J, XIE K Z, et al.An interval prediction method for quantifying the uncertainties of cooling load based on time classification[J]. Journal of building engineering, 2022, 56: 104739.
[17] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.
[18] 董昊. 计及风速波动特性的风电功率短期不确定性预测研究[D]. 吉林: 东北电力大学, 2021.
DONG H.Short-term wind power based on wind speed fluctuation characteristics research on uncertainty forecast[D]. Jilin: Northeast Electric Power University, 2021.
[19] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[20] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG J, YANG L, YIN K, et al.Short-term load forecasting method for integrated energy system based on ALIF-LSTM and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[21] 史洁. 风电场功率超短期预测算法优化研究[D]. 北京: 华北电力大学, 2012.
SHI J.Optimization for very short-term wind power forecasting algorithm[D]. Beijing: North China Electric Power University, 2012.
[22] AUS. Campus metabolism[DB/OL].[2023-3-10]. http://cm.asu.edu/.
[23] 谢文华. Spearman相关系数的变量筛选方法[D]. 北京: 北京工业大学, 2015.
XIE W H.Variable screening method of Spearman correlation coefficient[D].Beijing: Beijing University of Technology, 2015.
基金
国家电网有限公司总部科技项目(5100-202199531A-0-5-ZN)