以双层相变材料复合水箱为研究对象,通过数值模拟和实验研究的方法,对该水箱的蓄热特性进行模拟分析与实验验证,对比分析单、双层相变材料复合水箱的热特性,探究双层相变材料位置对复合水箱蓄热特性的影响规律。研究结果表明,与单层相变材料复合水箱相比,双层相变材料复合水箱的热分层更好,蓄热能力得到提升,双层相变材料复合水箱较普通水箱的蓄热量提高9.7%。双层相变材料距离进出水口位置较远时,相变材料完成熔化的时间更接近,更有利于蓄热水箱的热分层。
Abstract
Heat storage technology is the key to achieving efficient operation of solar heating systems. This study takes the double-layer phase change materials hybrid tank as the research object. Through numerical simulation and experimental research methods, the thermal storage characteristics of the tank are simulated, analyzed, and verified by the experimental results. The thermal characteristics of a single-layer, double-layer phase change materials hybrid tank is compared and analyzed, and the influence of the position of the double-layer phase change materials on the thermal storage characteristics of the hybrid tank is explored. According to the research findings, the double-layer phase change materials hybrid tank has better thermal stratification and increased heat storage capacity when compared to the single-layer phase change materials hybrid tank. The heat storage capacity of the hybrid tank made of double-layer phase change materials is 9.7% higher than that of the conventional water tank. When the double-layer phase change materials are far from the inlet and outlet, the melting time of the phase change materials are closer, which is more conducive to the thermal stratification of the heat storage tank.
关键词
太阳能 /
相变材料 /
储热 /
复合水箱 /
热分层
Key words
solar energy /
phase change materials /
heat storage /
hybrid tank /
thermal stratification
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FRAZZICA A, MANZAN M, SAPIENZA A, et al.Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications[J]. Applied energy, 2016, 183: 1157-1167.
[2] 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(S1): 47-56.
YAN Y F, ZHANG Z E, ZHANG L, et al.Application and utilization technology of solar energy[J]. Acta energiae solaris sinica, 2012, 33(S1): 47-56.
[3] 刘艳峰, 万静, 陈耀文, 等. 分布式太阳能集中供暖系统用户与集中蓄热装置容量匹配优化设计[J]. 太阳能学报, 2022, 43(9): 184-192.
LIU Y F, WAN J, CHEN Y W, et al.Optimal design of capacity matching between users and central heat storage device in distributed solar central heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 184-192.
[4] ZHOU Q, DU D M, LU C, et al.A review of thermal energy storage in compressed air energy storage system[J]. Energy, 2019, 188: 115993.
[5] LANDINI S, LEWORTHY J, O'DONOVAN T S. A review of phase change materials for the thermal management and isothermalisation of lithium-ion cells[J]. Journal of energy storage, 2019, 25: 100887.
[6] 李勇, 宋旺, 刘艳峰, 等. 多级相变太阳能通风吊顶蓄放热特性研究[J]. 太阳能学报, 2022, 43(9): 155-162.
LI Y, SONG W, LIU Y F, et al.Study on heat transfer characteristics of multistage phase change materials ventilation ceiling for solar heating[J]. Acta energiae solaris sinica, 2022, 43(9): 155-162.
[7] 冯国会, 王天雨, 王刚. 相变储能水箱研究综述[J]. 暖通空调, 2022, 52(2): 1-7.
FENG G H, WANG T Y, WANG G.Review of research on phase change energy storage tanks[J]. Heating ventilating & air conditioning, 2022, 52(2): 1-7.
[8] HUANG H T, XIAO Y M, LIN J Q, et al.Improvement of the efficiency of solar thermal energy storage systems by cascading a PCM unit with a water tank[J]. Journal of cleaner production, 2020, 245: 118864.
[9] 侯普民, 茅靳丰, 刘蓉蓉, 等. 环形相变单元的蓄热装置设计及运行特性[J]. 制冷学报, 2018, 39(1): 98-107.
HOU P M, MAO J F, LIU R R, et al.Design and operating characteristics of heat storage device for annular unit[J]. Journal of refrigeration, 2018, 39(1): 98-107.
[10] 谭心, 程西送, 虞启辉, 等. 基于Fluent的相变蓄热水箱蓄热性能研究[J]. 机床与液压, 2020, 48(16): 121-125.
TAN X, CHENG X S, YU Q H, et al.Research on thermal storage performance of phase change hot water tank based on Fluent[J]. Machine tool & hydraulics, 2020, 48(16): 121-125.
[11] 方桂花, 张振华, 连小刚, 等. 基于分层蓄热水箱的相变球释热实验研究[J]. 太阳能学报, 2022, 43(7): 191-196.
FANG G H, ZHANG Z H, LIAN X G, et al.Experimental study on heat release of phase change ball based on stratified hot water storage tank[J]. Acta energiae solaris sinica, 2022, 43(7): 191-196.
[12] HUANG H J, WANG Z L, ZHANG H, et al.An experimental investigation on thermal stratification characteristics with PCMs in solar water tank[J]. Solar energy, 2019, 177: 8-21.
[13] İZGI B, ARSLAN M.Effect of phase change material on thermal stratification of solar hot water tank with a mantle: a numerical analysis[J]. Journal of energy storage, 2022, 52: 105078.
[14] KUMAR G S, NAGARAJAN D, CHIDAMBARAM L A, et al.Role of PCM addition on stratification behaviour in a thermal storage tank-an experimental study[J]. Energy, 2016, 115: 1168-1178.
[15] GONG Z X, MUJUMDAR A S.Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied thermal engineering, 1996, 16(10): 807-815.
[16] YANG L, ZHANG X S, XU G Y.Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and buildings, 2014, 68: 639-646.
[17] SAHA S K, DAS R B.Exergetic and performance analyses of two-layered packed bed latent heat thermal energy storage system[J]. International journal of energy research, 2020, 44(3): 2208-2225.
[18] HALLER M Y, CRUICKSHANK C A, STREICHER W, et al.Methods to determine stratification efficiency of thermal energy storage processes-review and theoretical comparison[J]. Solar energy, 2009, 83(10): 1847-1860.
[19] DAVIDSON J H, ADAMS D A, MILLER J A.A coefficient to characterize mixing in solar water storage tanks[J]. Journal of solar energy engineering, 1994, 116(2): 94-99.
[20] ANDERSEN E, FURBO S, FAN J H.Multilayer fabric stratification pipes for solar tanks[J]. Solar energy, 2007, 81(10): 1219-1226.
[21] WU F, QI C Y, WANG H B, et al. An optimization study on the performance of hot water tank integrated phase change material[J]. Applied thermal engineering, 2023, 223: 119983.1-119983.15.
基金
国家重点研发计划(2019YFE0104900; 2022YFC3802705); 陕西省教育厅2021年度青年创新团队建设科研计划(21JP060); 西藏自治区拉萨市科技计划(LSKJ202308)