面向乡村建筑分时分区用能需求的零碳综合能源系统设计优化

赵安军, 焦阳, 于军琪, 陈一仁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 369-378.

PDF(3570 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3570 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 369-378. DOI: 10.19912/j.0254-0096.tynxb.2023-0378

面向乡村建筑分时分区用能需求的零碳综合能源系统设计优化

  • 赵安军1, 焦阳1, 于军琪1, 陈一仁2
作者信息 +

DESIGN OPTIMIZATION OF NET ZERO CARBON INTEGRATED ENERGY SYSTEM FOR RURAL BUILDINGS BASED ON TEMPORAL AND SPATIAL ENERGY DEMAND

  • Zhao Anjun1, Jiao Yang1, Yu Junqi1, Chen Yiren2
Author information +
文章历史 +

摘要

基于传统最大负荷原则设计的综合能源系统容量通常远大于建筑的实际用能需求,导致以户为单位的乡村综合能源系统设计缺乏针对性和适用性。该文通过现场调查和数值模拟的方法精细化乡村建筑的实际用能需求,基于农户用能行为制定4种用能策略。并构建考虑农户经济水平和零碳约束的综合能源系统设计优化模型,采用两阶段带精英策略的快速非支配排序遗传算法(Top-NSGA-II)进行多目标优化问题的求解,获得不同策略下的最佳设计方案。结果表明,与基于建筑全空间连续动态负荷的设计优化方案相比,基于分时分区用能需求的设计方案年总成本降低13.58%,系统购电比例降低7.89个百分点,实现全年净零碳排放。

Abstract

The capacity of integrated energy systems (IES) designed based on traditional maximum load design principles is far larger than the actual energy demand, resulting in the design capacity of household IES lack of targeting and applicability. Field investigations and numerical simulations are used to refine the energy demand of rural buildings. Determining 4 different temporal and spatial energy use strategies based on the usage behavior of rural residents. A rural IES design optimization model that includes the economic and net zero carbon constraints is constructed and solved by the Top-NSGA-Ⅱ algorithm. The optimal results for different strategies are obtained. Compared with the design based on full-time and full-space energy demand, the results show that design based on the temporal and spatial energy demand reduces annual total costs by 13.58 %, external electricity ratio by 7.98 percentage points, and achieves net zero carbon emissions.

关键词

综合能源系统 / 多目标规划 / 农村地区 / 净零碳排放 / 分时分区用能需求 / 设计优化

Key words

integrated energy system / multi-objective programming / rural areas / net zero carbon emission / temporal and spatial energy demand / design optimization

引用本文

导出引用
赵安军, 焦阳, 于军琪, 陈一仁. 面向乡村建筑分时分区用能需求的零碳综合能源系统设计优化[J]. 太阳能学报. 2024, 45(7): 369-378 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0378
Zhao Anjun, Jiao Yang, Yu Junqi, Chen Yiren. DESIGN OPTIMIZATION OF NET ZERO CARBON INTEGRATED ENERGY SYSTEM FOR RURAL BUILDINGS BASED ON TEMPORAL AND SPATIAL ENERGY DEMAND[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 369-378 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0378
中图分类号: TK01   

参考文献

[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2023城市能源系统专题[M]. 北京: 中国建筑工业出版社, 2023: 22-25.
Tsinghua University Building Energy Conservation Research Center. Annual development research report of building energy efficiency in China-2023 special topics of urban energy system[M]. Beijing: China Architecture & Building Press, 2023: 22-25.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[3] LI J X, WANG D, JIA H J, et al.Prospects of key technologies of integrated energy systems for rural electrification in China[J]. Global energy interconnection, 2021, 4(1): 3-17.
[4] 孙若男, 杨曼, 苏娟, 等. 我国农村能源发展现状及开发利用模式[J]. 中国农业大学学报, 2020, 25(8): 163-173.
SUN R N, YANG M, SU J, et al.Current situation of rural energy development and its development and utilization modes in China[J]. Journal of China Agricultural University, 2020, 25(8): 163-173.
[5] NOURI G, NOOROLLAHI Y, YOUSEFI H.Solar assisted ground source heat pump systems-a review[J]. Applied thermal engineering, 2019, 163: 114351.
[6] LEE M, LEE D C, PARK M H, et al.Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas[J]. Energy, 2022, 240: 122807.
[7] HUANG J P, FAN J H, FURBO S.Demonstration and optimization of a solar district heating system with ground source heat pumps[J]. Solar energy, 2020, 202: 171-189.
[8] JALILZADEHAZHARI E, VADIEE A, JOHANSSON J.Subsidies required for installing renewable energy supply systems considering variations in future climate conditions[J]. Journal of building engineering, 2021, 35: 101999.
[9] SCHREURS T, MADANI H, ZOTTL A, et al.Techno-economic analysis of combined heat pump and solar PV system for multi-family houses: an Austrian case study[J]. Energy strategy reviews, 2021, 36: 100666.
[10] BAE S, NAM Y.Economic and environmental analysis of ground source heat pump system according to operation methods[J]. Geothermics, 2022, 101: 102373.
[11] GAO Y F, DENG Y, YAO W Q, et al.Optimization of combined cooling, heating, and power systems for rural scenario based on a two-layer optimization model[J]. Journal of building engineering, 2022, 60: 105217.
[12] SIM M, SUH D.A heuristic solution and multi-objective optimization model for life-cycle cost analysis of solar PV/GSHP system: a case study of campus residential building in Korea[J]. Sustainable energy technologies and assessments, 2021, 47: 101490.
[13] DING X L, MA R J, SHAN M, et al.Occupants' on-demand control of individual heating devices in rural residential buildings: an experimental scheme and on-site study[J]. Energy and buildings, 2022, 259: 111862.
[14] MA R J, MAO C L, DING X L, et al.Diverse heating demands of a household based on occupant control behavior of individual heating equipment[J]. Energy and buildings, 2020, 207: 109612.
[15] SHAO N N, MA L D, ZHANG J L.Study on the rural residence heating temperature based on the residents behavior pattern in South Liaoning Province[J]. Energy and buildings, 2018, 174: 179-189.
[16] LIU Y F, WANG P, LUO X, et al.Analysis of flexible energy use behavior of rural residents based on two-stage questionnaire: a case study in Xi'an, China[J]. Energy and buildings, 2022, 269: 112246.
[17] LIU Y F, LI T, SONG C, et al.Field study of different thermal requirements based on the indoor activities patterns of rural residents in winter in Northwest China[J]. Science and technology for the built environment, 2018, 24(8): 867-877.
[18] 丁胜, 周博滔, 胡宝华. 基于NSGA-Ⅱ算法的小型分布式能源系统设计优化[J]. 太阳能学报, 2021, 42(1): 438-445.
DING S, ZHOU B T, HU B H.Design optimization of small distributed energy system based on nsga-II algorithm[J]. Acta energiae solaris sinica, 2021, 42(1): 438-445.
[19] 刘艳峰, 王亚星, 罗西, 等. 基于动态运行策略的太阳能分布式供能系统设计运行联合优化[J]. 太阳能学报, 2022, 43(5): 244-251.
LIU Y F, WANG Y X, LUO X, et al.Design and operation optimization of solar distributed energy supply system based on dynamic operation strategy[J]. Acta energiae solaris sinica, 2022, 43(5): 244-251.
[20] 姚盼, 袁艳平, 孙亮亮, 等. 西昌市太阳能热水系统集热面积、水箱容积与倾角的组合优化[J]. 太阳能学报, 2016, 37(3): 636-643.
YAO P, YUAN Y P, SUN L L, et al.Optimization of collector area-tank volume-tilt angle for swhs in XiChang[J]. Acta energiae solaris sinica, 2016, 37(3): 636-643.
[21] 曾和义, 刁乃仁, 方肇洪. 地源热泵竖直埋管的有限长线热源模型[J]. 热能动力工程, 2003, 18(2): 166-170, 216.
ZENG H Y, DIAO N R, FANG Z H.A model of finite-length linear heat-source for the vertical embedded pipe of a ground-source heat pump[J]. Journal of engineering for thermal energy and power, 2003, 18(2): 166-170, 216.
[22] 刁乃仁, 曾和义, 方肇洪. 竖直U型管地热换热器的准三维传热模型[J]. 热能动力工程, 2003, 18(4): 387-390, 434.
DIAO N R, ZENG H Y, FANG Z H.A quasi three-dimensional heat transfer model for vertical U-tube geothermal heat exchangers[J]. Journal of engineering for thermal energy and power, 2003, 18(4): 387-390, 434.
[23] 李慧, 杨少刚, 刘凤英. GSHP机组数学建模及仿真应用[J]. 系统仿真学报, 2018, 30(3): 914-920, 929.
LI H, YANG S G, LIU F Y.Mathematical modeling and simulation application of GSHP unit[J]. Journal of system simulation, 2018, 30(3): 914-920, 929.
[24] WU Y L, LIU Z B, LI B J, et al.Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff[J]. Renewable energy, 2022, 200: 558-570.
[25] YANG Y Q, BREMNER S, MENICTAS C, et al.Modelling and optimal energy management for battery energy storage systems in renewable energy systems: a review[J]. Renewable and sustainable energy reviews, 2022, 167: 112671.
[26] 江亿, 胡姗. 屋顶光伏为基础的农村新型能源系统战略研究[J]. 气候变化研究进展, 2022, 18(3): 272-282.
JIANG Y, HU S.Research on the development strategy of production and consumption integrated roof-top PV system in rural China[J]. Climate change research, 2022, 18(3): 272-282.
[27] WANG Y L, WANG X H, YU H Y, et al.Optimal design of integrated energy system considering economics, autonomy and carbon emissions[J]. Journal of cleaner production, 2019, 225: 563-578.
[28] 罗西, 刘加平. 居住建筑分布式光伏发电系统经济性分析[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(3): 437-441.
LUO X, LIU J P.Economic analysis of residential distributed PV project[J]. Journal of Xi'an University of Architecture & Technology (natural science edition), 2015, 47(3): 437-441.
[29] LIU Z Z, WANG Y.Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE transactions on evolutionary computation, 2019, 23(5): 870-884.
[30] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.

基金

国家重点研发计划(2022YFC3802703-04); 国家自然科学基金重点项目(62192750)

PDF(3570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/