高综合性能电卡复合材料及大功率制冷器件

李强, 杜飞宏, 冯嘉旺, 施骏业, 陈江平, 钱小石

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 420-426.

PDF(2253 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2253 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 420-426. DOI: 10.19912/j.0254-0096.tynxb.2023-0384

高综合性能电卡复合材料及大功率制冷器件

  • 李强1, 杜飞宏1, 冯嘉旺1, 施骏业1, 陈江平1, 钱小石1,2
作者信息 +

COMPOSITES WITH ENHANCED THERMAL CONDUNCTIVITY AND ELECTROCALORIC STRENGTH FOR HIGH-POWER REFRIGERATION APPLICATIONS

  • Li Qiang1, Du Feihong1, Feng Jiawang1, Shi Junye1, Chen Jiangping1, Qian Xiaoshi1,2
Author information +
文章历史 +

摘要

通过制备BaZr0.2Ti0.8O3-P(VDF-TrFE-CFE)复合材料来改善聚合物基电卡材料的综合性能,设计基于流固耦合传热的大功率制冷器件并通过有限元仿真来评估以不同电卡材料为制冷核心元件的器件制冷能力和效率。结果表明:相较于基础聚合物,BZT质量分数为10%的复合材料T-BZT-10%具有显著优异的电卡制冷性能和导热性能。在10 K的温度跨度下,以T-BZT-10%为制冷核心元件的电卡器件可实现31.0 W/cm3的制冷功率密度和1060.4 W的总制冷功率为基础电卡制冷器件的10倍),且COP达到5.2。

Abstract

Here the electrocaloric effect (ECE) and thermal conductivity of polymer-based electrocaloric (EC) materials are improved by means of the preparation of BaZr0.2Ti0.8O3-P(VDF-TrFE-CFE) nanocomposites. In addition, high-power refrigeration devices based on fluid-solid conjugated heat transfer were designed and numerical simulations were carried out to evaluate the cooling capacity and efficiency. The results show that T-BZT-10% (with a BZT mass fraction of 10%) has significantly ECE and heat transfer performance than that of the base terpolymer. Simulation results about the devices show that at a temperature span of 10 K, a system with T-BZT-10% as the core refrigeration element can achieve a cooling power density of 31.0 W/cm3 and total cooling power of 1060.4 W (more than a 10-fold cooling power improvement than that of the base EC device) with a COP of 5.2.

关键词

复合材料 / 数值仿真 / 导热系数 / 电卡效应 / 制冷器件

Key words

nanocomposites / numerical simulation / thermal conductivity / electrocaloric effect / refrigeration device

引用本文

导出引用
李强, 杜飞宏, 冯嘉旺, 施骏业, 陈江平, 钱小石. 高综合性能电卡复合材料及大功率制冷器件[J]. 太阳能学报. 2024, 45(7): 420-426 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0384
Li Qiang, Du Feihong, Feng Jiawang, Shi Junye, Chen Jiangping, Qian Xiaoshi. COMPOSITES WITH ENHANCED THERMAL CONDUNCTIVITY AND ELECTROCALORIC STRENGTH FOR HIGH-POWER REFRIGERATION APPLICATIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 420-426 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0384
中图分类号: TK221   

参考文献

[1] SHERMAN P, LIN H Y, MCELROY M.Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries[J]. Energy and buildings, 2022, 268: 112198.
[2] 许文华, 李惟毅, 郭强. 考虑环境影响的CO2/低GWP混合工质热泵热水器工质优选[J]. 太阳能学报, 2018, 39(1): 84-89.
XU W H, LI W Y, GUO Q.Working fluids selecting of CO2 blends with low-gwp(global warming potential)heat pump system considering impact of environment[J]. Acta energiae solaris sinica, 2018, 39(1): 84-89.
[3] 胡亚飞, 吕杰, 韩涛, 等. 基于R410A制冷剂的空气源燃气热泵系统制冷特性[J]. 太阳能学报, 2023, 44(3): 401-408.
HU Y F, LYU J, HAN T, et al.Performance characteristics of air source gas engine-driven heat pump system with r410a refrigerant for cooling application[J]. Acta energiae solaris sinica, 2023, 44(3): 401-408.
[4] 马瑞泽, 张景新, 蒋祎璠, 等. 太阳能PV/T热泵辅助分布式餐厨垃圾能源转化系统研究[J]. 太阳能学报, 2022, 43(8): 137-142.
MA R Z, ZHANG J X, JIANG Y F, et al.Research on distributed food waste-to-energy system coupled with PV/T heat pump[J]. Acta energiae solaris sinica, 2022, 43(8): 137-142.
[5] TU\VSEK J, ENGELBRECHT K, ERIKSEN D, et al. A regenerative elastocaloric heat pump[J]. Nature energy, 2016, 1(10): 16134.
[6] QIAN S X, GENG Y L, WANG Y, et al.A review of elastocaloric cooling: materials, cycles and system integrations[J]. International journal of refrigeration, 2016, 64: 1-19.
[7] LI B, KAWAKITA Y, OHIRA-KAWAMURA S, et al.Colossal barocaloric effects in plastic crystals[J]. Nature, 2019, 567(7749): 506-510.
[8] NEESE B, CHU B J, LU S G, et al.Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science, 2008, 321(5890): 821.
[9] SHI J Y, HAN D L, LI Z C, et al.Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225.
[10] QIAN X S, HAN D L, ZHENG L R, et al.High-entropy polymer produces a giant electrocaloric effect at low fields[J]. Nature, 2021, 600(7890): 664-669.
[11] GU H M, QIAN X S, LI X Y, et al. A chip scale electrocaloric effect based cooling device[J]. Applied physics letters, 2013, 102(12): 122904-1-122904-4.
[12] MA R J, ZHANG Z Y, TONG K, et al.Highly efficient electrocaloric cooling with electrostatic actuation[J]. Science, 2017, 357(6356): 1130-1134.
[13] SAJID M, HASSAN I, RAHMAN A.An overview of cooling of thermoelectric devices[J]. Renewable and sustainable energy reviews, 2017, 78: 15-22.
[14] MENG Y, ZHANG Z Y, WU H X, et al.A cascade electrocaloric cooling device for large temperature lift[J]. Nature energy, 2020, 5: 996-1002.
[15] CHU B.PVDF-based copolymers, terpolymers and their multi-component material systems for capacitor applications[D]. Philadelphia: The Pennsylvania State University, 2008.
[16] ZHANG G Z, FAN B Y, ZHAO P, et al.Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency[J]. ACS applied energy materials, 2018, 1(3): 1344-1354.

基金

国家重点研发计划重点专项(2020YFA0711500); 国家自然科学基金面上项目(52071627)

PDF(2253 KB)

Accesses

Citation

Detail

段落导航
相关文章

/