海上风电机组三脚架支撑结构疲劳分析方法

陆飞宇, 李成功, 龙凯, DiaeldinYara, 张锦华, 陶涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 699-703.

PDF(2747 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2747 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 699-703. DOI: 10.19912/j.0254-0096.tynxb.2023-0395

海上风电机组三脚架支撑结构疲劳分析方法

  • 陆飞宇1, 李成功1,2, 龙凯1, DiaeldinYara1, 张锦华3, 陶涛4
作者信息 +

FATIGUE ANALYSIS METHOD FOR TRIPOD SUPPORT STRUCUTRE OF OFFSHORE WIND TURBINE

  • Lu Feiyu1, Li Chenggong1,2, Long Kai1, Diaeldin Yara1, Zhang Jinhua3, Tao Tao4
Author information +
文章历史 +

摘要

为实现海上风电机组支撑结构抗疲劳设计,提出基于整体-局部方式建模的疲劳分析方法。利用该方法对热点局部区域进行详细有限元建模,基于IIW规范采用高精度六面体实体单元离散,其余非重点区域采用梁单元离散,可克服以往运用应力影响矩阵研究中忽略整体结构位移、边界条件不易施加等缺点。基于IEC 61400规范进行整机动力学和载荷计算,对某海上风电机组三脚架支撑结构进行疲劳分析。对比分析不同载荷工况、波高和水深下的累积损伤值,结果验证了所提出的整体-局部建模方法在海上风电机组三脚架支撑结构疲劳分析中的可行性和优越性。

Abstract

To realize the anti-fatigue design of offshore wind turbine support structures, a whole-local modeling-based fatigue analysis method was proposed. A detailed finite element model was established for the local hot spot regions. On the basis of the IIW specification, high-precision hexahedral solid elements were utilized for discretization, whereas beam elements were used to discretize non-critical areas. The proposed method overcomes the deficiencies of previous studies employing stress influence matrix, such as ignoring the displacement of the entire structure and making it difficult to apply the boundary conditions. Using IEC 61400 standards, the dynamic behavior and loads of the entire turbine were calculated and a fatigue analysis of the tripod support structure of an offshore wind turbine was performed. The cumulative damage values caused by various load conditions, wave height and water depth are compared and analyzed. The results demonstrate the viability and superiority of the proposed whole-local modeling method for fatigue analysis of offshore wind turbine tripod support structures.

关键词

海上风电机组 / 抗疲劳性 / 疲劳损伤 / 疲劳载荷 / 网格划分

Key words

offshore wind turbines / fatigue resistance / fatigue damage / fatigue load / mesh generation

引用本文

导出引用
陆飞宇, 李成功, 龙凯, DiaeldinYara, 张锦华, 陶涛. 海上风电机组三脚架支撑结构疲劳分析方法[J]. 太阳能学报. 2024, 45(7): 699-703 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0395
Lu Feiyu, Li Chenggong, Long Kai, Diaeldin Yara, Zhang Jinhua, Tao Tao. FATIGUE ANALYSIS METHOD FOR TRIPOD SUPPORT STRUCUTRE OF OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 699-703 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0395
中图分类号: TH12   

参考文献

[1] FU B, ZHAO J B, LI B Q, et al.Fatigue reliability analysis of wind turbine tower under random wind load[J]. Structural safety, 2020, 87: 101982.
[2] 龙凯. 风电机组塔筒结构强度校核与优化设计[M]. 北京: 中国水利水电出版社, 2020.
LONG K.Structural strength check and optimization design of wind turbine tower[M]. Beijing: China Water & Power Press, 2020.
[3] YETER B, GARBATOV Y, GUEDES SOARES C.Risk-based life-cycle assessment of offshore wind turbine support structures accounting for economic constraints[J]. Structural safety, 2019, 81: 101867.
[4] NASSIRAEI H, REZADOOST P.Stress concentration factors in tubular X-connections retrofitted with FRP under compressive load[J]. Ocean engineering, 2021, 229: 108562.
[5] DONG W B, MOAN T, GAO Z.Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering structures, 2011, 33(6): 2002-2014.
[6] YETER B, GARBATOV Y, GUEDES SOARES C.Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering structures, 2015, 101: 518-528.
[7] XU C H, LIU G, LI Z Y, et al.Multiaxial fatigue life prediction of tubular K-joints using an alternative structural stress approach[J]. Ocean engineering, 2020, 212: 107598.
[8] LARSEN M L, ARORA V, LÜTZEN M, et al. Fatigue life estimation of the weld joint in K-node of the offshore jacket structure using stochastic finite element analysis[J]. Marine structures, 2021, 78: 103020.
[9] LIU P H, CHEN I Y, LIU X Q, et al.Stress influence matrix on hot spot stress analysis for welded tubular joint in offshore jacket structure[J]. Ocean engineering, 2022, 251: 111103.
[10] SHITTU A A, MEHMANPARAST A, HART P, et al.Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations[J]. Reliability engineering & system safety, 2021, 215: 107838.
[11] 朱航, 李孟超, 郭耀华, 等. 深水海上风电三筒导管架基础受力及浮运分析[J]. 太阳能学报, 2022, 43(11): 269-276.
ZHU H, LI M C, GUO Y H, et al.Mechanics and floating analysis of three-bucket jacket foundation for offshore wind power in deep water[J]. Acta energiae solaris sinica, 2022, 43(11): 269-276.
[12] IGWEMEZIE V, MEHMANPARAST A, KOLIOS A.Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures—a review[J]. Renewable and sustainable energy reviews, 2019, 101: 181-196.
[13] 王滨, 李昕, 明小燕. 海上风力机基础结构疲劳损伤研究[J]. 太阳能学报, 2015, 36(3): 769-774.
WANG B, LI X, MING X Y.Study of foundation structure for offshore wind turbine on fatigue damage[J]. Acta energiae solaris sinica, 2015, 36(3): 769-774.
[14] MA H W, YANG J, CHEN L Z.Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation[J]. Applied ocean research, 2018, 73: 179-189.
[15] LIANG F Y, ZHENG H B, ZHANG H.On the pile tension capacity of scoured tripod foundation supporting offshore wind turbines[J]. Applied ocean research, 2020, 102: 102323.
[16] YUAN C G, MELVILLE B W, ADAMS K N.Scour at wind turbine tripod foundation under steady flow[J]. Ocean engineering, 2017, 141: 277-282.
[17] ZHANG L W, LI X.Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction[J]. China ocean engineering, 2017, 31(5): 559-566.
[18] ARCIGNI F, ABHINAV K A, COLLU M, et al.Analysis of tripod supported offshore wind turbines under conditions of marine growth[J]. Ocean engineering, 2021, 220: 108441.
[19] HAO E T, LIU C G.Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: monopile, tripod, and jacket[J]. Ocean engineering, 2017, 130: 218-227.
[20] LUCZAK M M, TELEGA J, ZAGATO N, et al.On the damage detection of a laboratory scale model of a tripod supporting structure by vibration-based methods[J]. Marine structures, 2019, 64: 146-160.
[21] 康海贵, 李玉刚, 郇彩云. 基于可靠度的海上风机基础结构优化设计方法研究[J]. 太阳能学报, 2009, 30(12): 1602-1607.
KANG H G, LI Y G, HUAN C Y.Rbdo method research of offshore wind turbine foundation structure[J]. Acta energiae solaris sinica, 2009, 30(12): 1602-1607.
[22] YANG H Z, ZHU Y, LU Q J, et al.Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines[J]. Renewable energy, 2015, 78: 16-25.
[23] 李炜, 张敏, 刘振亚, 等. 三脚架式海上风电基础结构基频敏感性研究[J]. 太阳能学报, 2015, 36(1): 90-95.
LI W, ZHANG M, LIU Z Y, et al.Fundamental structural frequency analysis for tripod-type offshore wind turbine[J]. Acta energiae solaris sinica, 2015, 36(1): 90-95.
[24] BAO S L, WANG W H, LI X, et al.Hot-spot stress caused by out-of-plane bending moments of three-planar tubular Y-joints[J]. Applied ocean research, 2020, 100: 102179.
[25] Support structures for wind turbines: DNVGL-ST-0126[S]. DNVGL, 2018.
[26] Wind turbines - Part 3: Design requirements for offshore wind turbines: DS/EN 61400-3:2009[S].

基金

南方电网新能源联合实验室(GDXNY2024KF03); 中国华能集团科技项目“超大型国产化海上风电机组关键技术研究(一期)”(HNKJ23-H13); 华能集团海上风电与智慧能源系统科技专项(HNKJ20-H88-01); 新能源电力系统全国重点实验室开放课题(LAPS23015)

PDF(2747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/