针对太阳能光热驱动CH4/CO2重整体系中自然聚光条件下高斯分布入射热流特性,采用有限容积法(FVM)建立二维CFD模型,耦合导热对流、非等温平衡、辐射传热与化学反应动力学等多物理模型,结合蒙特卡洛光线追迹进行光学模拟,系统研究聚光特性对前表面能流分布、温度场分布和组分分布的影响,以及前表面温差和太阳能-燃料转化效率之间的联系。在对孔隙尺度参数优化的基础上,将泡沫外形优化为抛物凹面的结构,可使前表面温差显著减小,温度不均匀性显著改善,泡沫反应器性能进一步提高。随着凹面深度h从5 mm增至12.5 mm时,前表面最大温差从481.2 K降至95.49 K。其中当h=12.5 mm时太阳能-燃料转化效率达到最优值50.5%,与平面泡沫反应器相比提升20.4%。
Abstract
Aiming at incident Gauss flux radiation conditions caused by the natural light concentration in solar-driven CH4/CO2 reforming system, the two-dimensional CFD model is established by finite volume method (FVM) coupled with thermal conduction and convection, non-isothermal flow, radiation transfer , chemical dynamics and Monte Carlo ray tracing, the effects of concentrated solar flux, temperature distribution and component distribution on temperature difference and the solar-to-fuel efficiency are comprehensively studied. On the basis of the optimization of pore scale parameters, the foam inlet is optimized into parabolic concave shape, the results show that the parabolic concave shape can significantly reduce the temperature difference on the front surface, with further improvement on temperature inhomogeneity and foam reactor efficiency. As the concave depth h increases from 5 mm to 12.5 mm, the maximum temperature difference on the front surface decreases from 481.2 K to 95.49 K. Besides, when h=12.5 mm, the solar-to-fuel efficiency reached the optimal value of 50.5%, which is increased by 20.4% compared with the planar foam reactor.
关键词
太阳能 /
热化学 /
甲烷 /
能量储存 /
重整反应 /
能量效率
Key words
solar energy /
thermochemistry /
methane /
energy storage /
reforming reactions /
energy efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 雷宇, 袁熹, 王颖, 等. 基于太阳能的甲烷重整制氢技术研究进展[J]. 太阳能学报, 2022, 43(12): 154-160.
LEI Y, YUAN X, WANG Y, et al.Research progress of hydrogen production from methane reforming based on solar energy[J]. Acta energiae solaris sinica, 2022, 43(12): 154-160.
[2] LIU X L, WANG T, GAO K, et al.Ca- and Ga-doped LaMnO3 for solar thermochemical CO2 splitting with high fuel yield and cycle stability[J]. ACS applied energy materials, 2021, 4: 9000-9012.
[3] GAO K, LIU X L, WANG T, et al.Sr-doped SmMnO3 perovskites for high-performance near-isothermal solar thermochemical CO2-to-fuel conversion[J]. Sustainable energy & fuels, 2021, 5(17): 4295-4310.
[4] WU S Y, WU S Y, SUN Y G.Light-driven dry reforming of methane on metal catalysts[J]. Solar RRL, 2021, 5(6): 2000507.
[5] LI M J, SUN Z X, HU Y H.Catalysts for CO2 reforming of CH4: a review[J]. Journal of materials chemistry A, 2021, 9(21): 12495-12520.
[6] BABACAN O, DE CAUSMAECKER S, GAMBHIR A, et al.Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage[J]. Nature energy, 2020, 5: 720-728.
[7] BUELENS L C, GALVITA V V, POELMAN H, et al.Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Science, 2016, 354(6311): 449-452.
[8] LIU X L, SHI H, MENG X G, et al.Solar-enhanced CO2 conversion with CH4 over synergetic NiCo alloy catalysts with light-to-fuel efficiency of 33.8%[J]. Solar RRL, 2021, 5(8): 2170085.
[9] ZHENG H Y, ZHANG Z Y, XU K D, et al.Analysis of structure-induced performance in photothermal methane dry reforming reactor with coupled optics-CFD modeling[J]. Chemical engineering journal, 2022, 428: 131441.
[10] GAO R X, ZHANG C D, JUN K W, et al.Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse water-gas-shift and Co-based Fischer-Tropsch synthesis[J]. Journal of CO2 utilization, 2021, 51: 101619.
[11] LIU X L, MU Z K, SUN C, et al.Highly efficient solar-driven CO2-to-fuel conversion assisted by CH4 over NiCo-ZIF derived catalysts[J]. Fuel, 2022, 310: 122441.
[12] LI M J, SUN Z X, HU Y H.Thermo-photo coupled catalytic CO2 reforming of methane: a review[J]. Chemical engineering journal, 2022, 428: 131222.
[13] CHEN C, KONG M M, ZHOU S Q, et al.Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage[J]. Applied energy, 2020, 266: 114788.
[14] HENDRICKS T J, HOWELL J R.Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. Journal of heat transfer, 1996, 118(1): 79-87.
[15] LIU H M, MENG X G, YANG W W, et al.Photo-thermal CO2 reduction with methane on group VIII metals: in situ reduced WO3 support for enhanced catalytic activity[J]. Chinese journal of catalysis, 2021, 42(11): 1976-1982.
[16] WÖRNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catalysis today, 1998, 46(2/3): 165-174.
[17] BALAT-PICHELIN M, BOUSQUET A.Total hemispherical emissivity of sintered SiC up to 1850 K in high vacuum and in air at different pressures[J]. Journal of the European ceramic society, 2018, 38(10): 3447-3456.
[18] KRIBUS A, GRAY Y, GRIJNEVICH M, et al.The promise and challenge of solar volumetric absorbers[J]. Solar energy, 2014, 110: 463-481.
[19] LIU X L, CHENG B, ZHU Q B, et al.Highly efficient solar-driven CO2 reforming of methane via concave foam reactors[J]. Energy, 2022, 261: 125141.
[20] LU J F, CHEN Y, DING J, et al.High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor[J]. Applied energy, 2016, 162: 1473-1482.
[21] MU Z K, LIU X L, SHI H, et al.A highly efficient solar-driven CO2 reforming of methane on Ni/MgAlOx-LDH loaded Ni foam reactors with heat recovery: experimental measurements and numerical simulations[J]. Chemical engineering journal, 2022, 446: 137437.
[22] 王沛, 李嘉宝, 周领, 等. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报, 2022, 43(9): 527-534.
WANG P, LI J B, ZHOU L, et al.Multi-field coupling modeling and cooperative optimization of solar thermal chemical reactor[J]. Acta energiae solaris sinica, 2022, 43(9): 527-534.
[23] 常哲韶, 赵东明, 李鑫, 等. 10 kW高温太阳能热化学反应器及聚光器设计和数值模拟[J]. 太阳能学报, 2021, 42(10): 160-167.
CHANG Z S, ZHAO D M, LI X, et al.Design and numerical simulation of 10 kW solar thermochemical reactor with secondary condenser[J]. Acta energiae solaris sinica, 2021, 42(10): 160-167.
[24] NIMVARI M E, JOUYBARI N F, ESMAILI Q.A new approach to mitigate intense temperature gradients in ceramic foam solar receivers[J]. Renewable energy, 2018, 122: 206-215.
[25] DIETRICH B, SCHABEL W, KIND M, et al.Pressure drop measurements of ceramic sponges—determining the hydraulic diameter[J]. Chemical engineering science, 2009, 64(16): 3633-3640.
[26] ZHU Q B, XUAN Y M.Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics[J]. Energy, 2019, 172: 467-476.
[27] GOKON N, OSAWA Y, NAKAZAWA D, et al.Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International journal of hydrogen energy, 2009, 34(4): 1787-1800.
基金
太阳能高效碳转化技术研发(BE20220243)