基于聚类的HPO-BILSTM光伏功率短期预测

周育才, 肖添, 谢七月, 付强, 钟敏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 512-518.

PDF(2004 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2004 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 512-518. DOI: 10.19912/j.0254-0096.tynxb.2023-0402

基于聚类的HPO-BILSTM光伏功率短期预测

  • 周育才1, 肖添1, 谢七月1, 付强1, 钟敏2
作者信息 +

CLUSTERING-BASED HPO-BILSTM SHORT-TERM PREDICTION OF PV POWER

  • Zhou Yucai1, Xiao Tian1, Xie Qiyue1, Fu Qiang1, Zhong Min2
Author information +
文章历史 +

摘要

考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分析(PCA)降维和FCM聚类算法将数据按天气类型分为阴、晴、雨;最后通过HPO筛选得出BILSTM神经网络的最佳超参数,避免因超参数设置不佳对实验带来的影响,进一步提高实验的准确性和模型的泛化能力。最后通过预测和对比实验进行分析,验证所提方法的优越性。

Abstract

Considering the volatility and uncertainty of PV power generation under different weather types, a short-term power prediction model of PV power generation based on fuzzy C-mean clustering algorithm and predator optimization algorithm to optimize the bi-directional long short-term memory network is proposed. Firstly, the PV power generation data are processed and analyzed, then the principal component analysis downscaling and FCM clustering algorithm are performed to classify the data into cloudy, sunny and rainy according to weather types. Then, the best hyperparameters of the BILSTM neural network are derived through HPO screening, which avoids the impact of poor hyperparameter settings on the experiments and further improves the accuracy of the experiments and the generalization ability of the model. Finally, the superiority of the proposed method is verified by prediction and comparison experiments.

关键词

光伏发电 / 双向长短期记忆网络 / 功率预测 / 降维 / 聚类 / 优化算法

Key words

PV power generation / bi-directional long short-term memory / power forecasting / downscaling / clustering / optimization algorithm

引用本文

导出引用
周育才, 肖添, 谢七月, 付强, 钟敏. 基于聚类的HPO-BILSTM光伏功率短期预测[J]. 太阳能学报. 2024, 45(4): 512-518 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0402
Zhou Yucai, Xiao Tian, Xie Qiyue, Fu Qiang, Zhong Min. CLUSTERING-BASED HPO-BILSTM SHORT-TERM PREDICTION OF PV POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 512-518 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0402
中图分类号: TM615   

参考文献

[1] 马丽梅, 王俊杰. 能源转型与可再生能源创新: 基于跨国数据的实证研究[J]. 浙江社会科学, 2021(4): 21-30, 156.
MA L M, WANG J J.Energy transformation and renewable energy innovation:an empirical study based on transnational data[J]. Zhejiang social sciences, 2021(4): 21-30, 156.
[2] 马丽梅, 黄崇乐. 金融驱动与可再生能源发展: 基于跨国数据的动态演化分析[J]. 中国工业经济, 2022(4): 120-138.
MA L M, HUANG C L.Financial drivers and renewable energy development—a dynamic evolution analysis based on multinational data[J]. China industrial economics, 2022(4): 120-138.
[3] 路绍琰, 吴丹, 马来波, 等. 中国太阳能利用技术发展概况及趋势[J]. 科技导报, 2021, 39(19): 66-73.
LU S Y, WU D, MA L B, et al.Development situation and trend of solar energy technology industry in China[J]. Science & technology review, 2021, 39(19): 66-73.
[4] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022,43(12): 88-97.
[5] 舒胜, 谢应明, 杨文字, 等. 光伏发电预测方法研究进展[J]. 热能动力工程, 2020, 35(11): 1-11.
SHU S, XIE Y M, YANG W Z, et al.A review of photovoltaic power generation forecasting methods[J]. Journal of engineering for thermal energy and power, 2020, 35(11): 1-11.
[6] 王洪坤, 葛磊蛟, 李宏伟, 等. 分布式光伏发电的特性分析与预测方法综述[J]. 电力建设, 2017, 38(7): 1-9.
WANG H K, GE L J, LI H W, et al.A review on characteristic analysis and prediction method of distributed PV[J]. Electric power construction, 2017, 38(7): 1-9.
[7] 周满国. 基于深度学习的光伏发电功率预测研究[D]. 赣州: 江西理工大学, 2022.
ZHOU M G.Research on power prediction of photovoltaic generation based on deep learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.
[8] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[9] 张扬科, 李刚, 李秀峰. 基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J]. 电力自动化设备, 2021, 41(11): 205-210.
ZHANG Y K, LI G, LI X F.Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric power automation equipment, 2021, 41(11): 205-210.
[10] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318.
YU X Y, ZHAO Y M, YANG N N, et al.Photovoltaic power generation forecasting based on VMD-SE-LSSVM and iterative error correction[J]. Acta energiae solaris sinica, 2020,41(2): 310-318.
[11] 金鑫, 袁越, 傅质馨, 等. 天气类型聚类的支持向量机在光伏系统输出功率预测中的应用[J]. 现代电力, 2013, 30(4): 13-18.
JIN X, YUAN Y, FU Z X, et al.Application of support vector machine based on weather type clustering in power output forecasting of photovoltaic generation system[J]. Modern electric power, 2013, 30(4): 13-18.
[12] 王继东, 宋智林, 冉冉. 基于改进支持向量机算法的光伏发电短期功率滚动预测[J]. 电力系统及其自动化学报, 2016, 28(11): 9-13.
WANG J D, SONG Z L, RAN R.Short-term photovoltaic power generation rolling forecast based on optimized SVM[J]. Proceedings of the CSU-EPSA, 2016, 28(11): 9-13.
[13] 高阳, 张碧玲, 毛京丽, 等. 基于机器学习的自适应光伏超短期出力预测模型[J]. 电网技术, 2015, 39(2): 307-311.
GAO Y, ZHANG B L, MAO J L, et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J]. Power system technology, 2015, 39(2): 307-311.
[14] 王哲. 基于ANN和时间周期性的光伏电站辐照度预测研究[D]. 保定: 华北电力大学(保定), 2012.
WANG Z.Study on irradiance prediction of photovoltaic power station based on ANN and time-periodicity[D]. Baoding: North China Electric Power University, 2012.
[15] 田剑刚. 基于GRU深度学习的光伏发电超短期功率预测研究[D]. 南昌: 华东交通大学, 2021.
TIAN J G.Research on ultra-short-term power prediction of photovoltaic power based on GRU of deep learning algorithm[D]. Nanchang: East China Jiaotong University, 2021.
[16] 方鹏, 高亚栋, 潘国兵, 等. 基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J]. 可再生能源, 2022, 40(1): 48-54.
FANG P, GAO Y D, PAN G B, et al.Research on forecasting method of mid-and long-term photovoltaic power generation based on LSTM neural network[J]. Renewable energy resources, 2022, 40(1): 48-54.
[17] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[18] 李梅, 宁德军, 郭佳程. 基于注意力机制的CNN-LSTM模型及其应用[J]. 计算机工程与应用, 2019, 55(13): 20-27.
LI M, NING D J, GUO J C.Attention mechanism-based CNN-LSTM model and its application[J]. Computer engineering and applications, 2019, 55(13): 20-27.
[19] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948.
[20] NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A.Hunter-prey optimization: algorithm and applications[J]. Soft computing, 2022, 26(3): 1279-1314.

PDF(2004 KB)

Accesses

Citation

Detail

段落导航
相关文章

/