基于分组控制策略的风电场储能容量优化配置

史林军, 端木陈睿, 杨冬梅, 吴峰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 340-349.

PDF(1861 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1861 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 340-349. DOI: 10.19912/j.0254-0096.tynxb.2023-0404

基于分组控制策略的风电场储能容量优化配置

  • 史林军1, 端木陈睿1, 杨冬梅2, 吴峰1
作者信息 +

OPTIMAL ALLOCATION OF WIND FARM ENERGY STORAGE CAPACITY BASED ON GROUP CONTROL STRATEGY

  • Shi Linjun1, Duanmu Chenrui1, Yang Dongmei2, Wu Feng1
Author information +
文章历史 +

摘要

为解决风电出力的波动性和不确定性问题,提出一种基于电池储能分组控制策略并计及其运行不平衡性的风电场电池储能容量优化配置方法。首先,在比较分析不同电池储能分组策略基础上,提出风储联合系统三电池组分组控制策略及充放电运行模式,并构建计及经济成本、衰减指标和寿命期限的多目标电池储能容量配置优化模型;然后,采用变分模态分解法处理风电数据,并通过非支配排序遗传算法与CRITIC-TOPSIS综合决策法联合求解获取最佳的电池储能容量配置方案;最后,通过与现有分组控制策略对比,验证该文所提出的三电池分组策略在改善电池储能充放电不平衡性以及减缓损耗方面的有效性,并对比不同目标和不同决策方法下的电池储能配置方案,结果表明该文提出的多目标优化模型与综合决策方法在延长电池使用寿命的同时保证经济性方面具有明显优势。

Abstract

In order to solve the fluctuation and uncertainty of wind power output, an optimal allocation method of battery storage capacity for wind farms based on battery storage grouping control strategy and its operational imbalance is proposed. Firstly, based on the comparative analysis of different battery storage grouping strategies, a three-cell grouping control strategy and charging/discharging operation mode of the combined wind storage system are proposed, and a multi-objective battery storage capacity allocation optimization model is constructed taking into account the economic cost, decay index and lifetime. Then, the wind power data are processed by the variational modal decomposition method, and the optimal battery storage capacity allocation scheme is obtained by the joint solution of the non-dominated ranking genetic algorithm and the CRITIC-TOPSIS integrated decision method. Finally, the effectiveness of this three-cell grouping strategy in improving the battery storage charging and discharging imbalance and slowing down the losses is verified by comparing with the existing grouping control strategy, and the battery storage configuration schemes under different objectives and different decision methods are compared, and the results show that this multi-objective optimization model and the integrated decision method have obvious advantages in extending the battery life while ensuring the economy.

关键词

风电场 / 电池储能 / 遗传算法 / 容量配置 / 分组控制 / 不平衡度

Key words

wind farm / battery storage / genetic algorithm / capacity configuration / grouping control / imbalance degree

引用本文

导出引用
史林军, 端木陈睿, 杨冬梅, 吴峰. 基于分组控制策略的风电场储能容量优化配置[J]. 太阳能学报. 2024, 45(7): 340-349 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0404
Shi Linjun, Duanmu Chenrui, Yang Dongmei, Wu Feng. OPTIMAL ALLOCATION OF WIND FARM ENERGY STORAGE CAPACITY BASED ON GROUP CONTROL STRATEGY[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 340-349 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0404
中图分类号: TM614   

参考文献

[1] 曹明浩, 于继来. 面向风电场发电曲线偏差校正的电化学储能系统容量规划方法[J]. 电力系统自动化, 2022, 46(11): 27-36.
CAO M H, YU J L.Capacity planning method of electrochemical energy storage system for generation curve deviation correction of wind power farm[J]. Automation of electric power systems, 2022, 46(11): 27-36.
[2] 张小莲, 陈冲, 张仰飞, 等. 考虑电池运行状态的风电场储能容量优化配置[J]. 电力系统自动化, 2022, 46(18): 199-207.
ZHANG X L, CHEN C, ZHANG Y F, et al.Optimal configuration of wind farm energy storage capacity considering battery operation state[J]. Automation of electric power systems, 2022, 46(18): 199-207.
[3] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(4): 75-81.
LIU Z M, QI G Y, GAO J G, et al.Research on optimal configuration of hybrid energy storage capacity based on adaptive VMD[J]. Acta energiae solaris sinica, 2022, 43(4): 75-81.
[4] 彭春华, 陈露, 张金克, 等. 基于分类概率机会约束IGDT的配网储能多目标优化配置[J]. 中国电机工程学报, 2020, 40(9): 2809-2819.
PENG C H, CHEN L, ZHANG J K, et al.Multi-objective optimal allocation of energy storage in distribution network based on classified probability chance constraint information gap decision theory[J]. Proceedings of the CSEE, 2020, 40(9): 2809-2819.
[5] 赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 电力系统保护与控制, 2021, 49(12): 16-24.
ZHAO W, YUAN X L, ZHOU Y X, et al.Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power system protection and control, 2021, 49(12): 16-24.
[6] 李培强, 李雄, 蔡笋, 等. 风电场含退役动力电池的混合储能系统容量优化配置[J]. 太阳能学报, 2022, 43(5): 492-498.
LI P Q, LI X, CAI S, et al.Capacity optimization configuration of hybrid energy storage system with retired power batteries in wind farms[J]. Acta energiae solaris sinica, 2022, 43(5): 492-498.
[7] 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443.
MA L, WEI C W, XIE L R, et al.Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta energiae solaris sinica, 2021, 42(10): 437-443.
[8] 魏东辉, 赵清华, 于舜尧, 等. 一种新型双电池风力发电储能系统及控制策略[J]. 太阳能学报, 2021, 42(3): 259-267.
WEI D H, ZHAO Q H, YU S Y, et al.A novel dual-battery energy storage system and control strategy for wind power application[J]. Acta energiae solaris sinica, 2021, 42(3): 259-267.
[9] 孙玉树, 张国伟, 唐西胜, 等. 风电功率波动平抑下的MPC双储能控制策略研究[J]. 电工技术学报, 2019, 34(3): 571-578.
SUN Y S, ZHANG G W, TANG X S, et al.Research on MPC and daul energy storage control strategies with wind power fluctuation mitigation[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 571-578.
[10] SUN Y S, PEI W, JIA D Q, et al.Application of integrated energy storage system in wind power fluctuation mitigation[J]. Journal of energy storage, 2020, 32: 101835.
[11] 严干贵, 蔡长兴, 段双明, 等. 考虑电池储能单元分组优化的微电网运行控制策略[J]. 电力系统自动化, 2020, 44(23): 38-46.
YAN G G, CAI C X, DUAN S M, et al.Operation control strategy of microgrid considering grouping optimization of battery energy storage units[J]. Automation of electric power systems, 2020, 44(23): 38-46.
[12] 张小莲, 陈冲, 张仰飞, 等. 考虑充放电不平衡的风电功率平滑电池分组控制[J]. 控制理论与应用, 2022, 39(3): 449-458.
ZHANG X L, CHEN C, ZHANG Y F, et al.Battery grouping control for wind power smoothing considering unbalanced charging and discharging[J]. Control theory & applications, 2022, 39(3): 449-458.
[13] GONG Q W, WANG Y B.Economic dispatching strategy of double lead-acid battery packs considering various factors[J]. Journal of electrical engineering & technology, 2021, 16(1): 191-203.
[14] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分:陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system: Part 1: On shore wind power[S].
[15] 李咸善, 解仕杰, 方子健, 等. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10): 44-51.
LI X S, XIE S J, FANG Z J, et al.Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric power automation equipment, 2021, 41(10): 44-51.
[16] 秦子恺, 黄婧杰, 周任军, 等. 计及源-荷不确定性的虚拟电厂多目标鲁棒优化调度[J]. 电力系统及其自动化学报, 2023, 35(6): 13-21.
QIN Z K, HUANG J J, ZHOU R J, et al.Multi-objective robust optimal scheduling of virtual power plant considering source-load uncertainty[J]. Proceedings of the CSU-EPSA, 2023, 35(6): 13-21.
[17] 胡昱, SEAMUS D Garvey, 许未晴, 等. 基于(火用)分析的储罐式压缩空气储能系统的成本优化[J]. 机械工程学报, 2022, 58(12): 261-269.
HU Y, GARVEY S, XU W Q, et al.Cost optimization of tank-type compressed air energy storage systems based on exergy analysis[J]. Journal of mechanical engineering, 2022, 58(12): 261-269.
[18] WANG Y L, SONG F H, MA Y Z, et al.Research on capacity planning and optimization of regional integrated energy system based on hybrid energy storage system[J]. Applied thermal engineering, 2020, 180: 115834.
[19] 李飞, 李咸善, 李振兴, 等. 基于梯级水电调节的多能联合发电系统短期优化调度[J]. 电力系统保护与控制, 2022, 50(15): 11-20.
LI F, LI X S, LI Z X, et al.Short-term optimal scheduling of multi-energy combined generation systems based on the regulation of cascade hydropower stations[J]. Power system protection and control, 2022, 50(15): 11-20.

基金

智能电网保护和运行控制国家重点实验室(SGNR0000KJJS2200297); 国家自然科学基金中英合作项目(52061635102)

PDF(1861 KB)

Accesses

Citation

Detail

段落导航
相关文章

/