含模型协同补偿的微电网变换器自抗扰稳压控制

周雪松, 景亚楠, 赵浛宇, 赵明, 王博, 杨清

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 323-332.

PDF(2937 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2937 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 323-332. DOI: 10.19912/j.0254-0096.tynxb.2023-0408

含模型协同补偿的微电网变换器自抗扰稳压控制

  • 周雪松1, 景亚楠1, 赵浛宇1, 赵明2, 王博1, 杨清1
作者信息 +

ACTIVE DISTURBANCE REJECTION VOLTAGE STABILIZING CONTROL FOR CONVERTER OF MICROGRID WITH MODEL COLLABORATIVE COMPENSATION

  • Zhou Xuesong1, Jing Ya'nan1, Zhao Hanyu1, Zhao Ming2, Wang Bo1, Yang Qing1
Author information +
文章历史 +

摘要

针对直流微电网中双向DC-DC变换器输出端口电压受扰不稳定的问题,提出一种含已知扰动模型描述和未知扰动二阶描述协同补偿的线性自抗扰控制策略,以减小线性扩张状态观测的观测负担、提高其观测精度,并进一步改善自抗扰控制系统的抗扰性能。通过对系统性能的理论分析,说明了该控制策略能改善电压受扰波动的原因。最后,通过仿真和实验对比说明改进型自抗扰控制系统在抗扰性、鲁棒性上均优于电压外环电流内环的PI控制以及传统自抗扰控制。

Abstract

Aiming at the problem of voltage instability at the output port of Bi-directional DC-DC Converter in DC microgrid, a linear active disturbance rejection control strategy with known disturbance model description and unknown disturbance second-order description coordinated compensation is proposed to reduce the observation burden of linear expansion state observation and improve its observation accuracy, And further improves the anti-interference performance of the auto disturbance rejection control system. Through theoretical analysis of the system performance, the reason why this control strategy can improve voltage disturbance fluctuations is explained. Finally,through simulation and experimental comparison, it is shown that the improved ADR control system is better than the PI control of the outer loop of voltage and the inner loop of current and the traditional ADR control in terms of immunity and robustness.

关键词

微电网 / DC-DC变换器 / 抗扰 / 自抗扰控制 / 模型补偿

Key words

microgrids / DC-DC converters / disturbance rejection / active disturbance rejection control / model compensation

引用本文

导出引用
周雪松, 景亚楠, 赵浛宇, 赵明, 王博, 杨清. 含模型协同补偿的微电网变换器自抗扰稳压控制[J]. 太阳能学报. 2024, 45(7): 323-332 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0408
Zhou Xuesong, Jing Ya'nan, Zhao Hanyu, Zhao Ming, Wang Bo, Yang Qing. ACTIVE DISTURBANCE REJECTION VOLTAGE STABILIZING CONTROL FOR CONVERTER OF MICROGRID WITH MODEL COLLABORATIVE COMPENSATION[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 323-332 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0408
中图分类号: TM615   

参考文献

[1] 肖先勇, 郑子萱. “双碳” 目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59.
XIAO X Y, ZHENG Z X.New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced engineering sciences, 2022, 54(1): 47-59.
[2] 徐岩, 刘婧妍, 张诗杭, 等. 基于遗传算法的直流配电网线路故障定位方法[J]. 太阳能学报, 2020, 41(12): 1-8.
XU Y, LIU J Y, ZHANG S H, et al.Fault location method based on genetic algorithm for DC distribution network[J]. Acta energiae solaris sinica, 2020, 41(12): 1-8.
[3] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[4] 杨惠, 晁凯悦, 孙向东, 等. 基于矢量作用时间的双向DC-DC变换器预测电流控制方法[J]. 电工技术学报, 2020, 35(S1): 70-80.
YANG H, CHAO K Y, SUN X D, et al.Predictive current control method for bidirectional DC-DC converter based on optimal operating time of vector[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 70-80.
[5] 罗玮, 陆益民. 带恒功率负载多电平Boost变换器的复合非线性控制[J]. 太阳能学报, 2022, 43(7): 506-512.
LUO W, LU Y M.Compound nonlinear control of multi-level Boost converter with constant power load[J]. Acta energiae solaris sinica, 2022, 43(7): 506-512.
[6] REN C, DING Y T, HU L, et al.Active disturbance rejection control of euler-lagrange systems exploiting internal damping[J]. IEEE transactions on cybernetics, 2022, 52(6): 4334-4345.
[7] 黄文俊, 白瑞林, 朱渊渤. 基于优化模型补偿自抗扰的伺服控制方法研究[J]. 测控技术, 2017, 36(3): 71-74, 78.
HUANG W J, BAI R L, ZHU Y B.Research on servo control method based on optimized model compensation active disturbance rejection controller[J]. Measurement & control technology, 2017, 36(3): 71-74, 78.
[8] VO A T, KANG H J.Adaptive neural integral full-order terminal sliding mode control for an uncertain nonlinear system[J]. IEEE access, 2019, 7: 42238-42246.
[9] LEE D C, LEE G M, LEE K D.DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE transactions on industry applications, 2000, 36(3): 826-833.
[10] 李冰林, 曾励, 张鹏铭, 等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报, 2021, 25(7): 129-138.
LI B L, ZENG L, ZHANG P M, et al.Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric machines and control, 2021, 25(7): 129-138.
[11] LI S Q, CAO M Y, LI J, et al.Sensorless-based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator[J]. IEEE access, 2019, 7: 122663-122674.
[12] 杨惠, 骆姗, 孙向东, 等. 光伏储能双向DC-DC变换器的自抗扰控制方法研究[J]. 太阳能学报, 2018, 39(5): 1342-1350.
YANG H, LUO S, SUN X D, et al.Research on adrc method for bidirectional DC-DC converter of solar energy storage system[J]. Acta energiae solaris sinica, 2018, 39(5): 1342-1350.
[13] 栾思平, 苏适, 杨洲, 等. 适应于直流新能源/储能接入的三电平Buck-Boost变换器建模及控制器设计[J]. 太阳能学报, 2022, 43(4): 56-65.
LUAN S P, SU S, YANG Z, et al.Modeling and controller design of three-level Buck-Boost converter adapted to DC new energy and energy storage access[J]. Acta energiae solaris sinica, 2022, 43(4): 56-65.
[14] 王晓远, 刘铭鑫, 陈学永, 等. 电动汽车用PMSM带滤波补偿三阶滑模自抗扰控制[J]. 电机与控制学报, 2021, 25(11): 25-34.
WANG X Y, LIU M X, CHEN X Y, et al.Third-order sliding mode active disturbance rejection control of PMSM with filter compensation for electric vehicle[J]. Electric machines and control, 2021, 25(11): 25-34.
[15] 陶珑, 王萍, 王议锋, 等. 微电网负载端接口变换器的自抗扰稳压控制[J]. 电工技术学报, 2022, 37(8): 2076-2085.
TAO L, WANG P, WANG Y F, et al.Voltage stabilization strategy for load-side interface converter of microgrid combined with active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2076-2085.
[16] TAO L, WANG P, MA X Y, et al.Robustness optimization through modified linear active disturbance rejection control for high-voltage load interface in microgrid[J]. IEEE transactions on industrial electronics, 2023, 70(4): 3909-3919.
[17] LIN P, WU Z, FEI Z Y, et al.A generalized PID interpretation for high-order LADRC and cascade LADRC for servo systems[J]. IEEE transactions on industrial electronics, 2022, 69(5): 5207-5214.
[18] 孙明. 火电机组热工过程自抗扰控制的研究与应用[D]. 北京: 华北电力大学, 2021.
SUN M.Research on active disturbance rejection control and its application in thermal process of power plant[D]. Beijing: North China Electric Power University, 2021.
[19] 刘庆龙. 基于总扰动的线性自抗扰控制性能分析及改进[D]. 青岛: 青岛理工大学, 2018.
LIU Q L.Perfotmance analysis and impronement of linear adrc based on total disturbance[D]. Qingdao: Qingdao Tehcnology University, 2018.

基金

国家自然科学基金(51877152); 天津市科技特派员项目(22YDTPJC00340); 天津市研究生科研创新项目(2022SKY180); 天津理工大学校级研究生科研创新实践项目(YJ2225)

PDF(2937 KB)

Accesses

Citation

Detail

段落导航
相关文章

/