针对漂浮式风电机组浮台内调谐质量阻尼器(TMD)参数调优的问题,以5 MW Barge型漂浮式风电机组为研究对象,采用多目标灰狼算法(MOGWO)优化TMD参数配置。首先,基于欧拉-拉格朗日方程建立浮台内含TMD的漂浮式风电机组动力学模型,采用Levenberg-Marquardt(LM)法进行模型未知参数辨识;其次,同时考虑塔顶和塔基控制目标,采用MOGWO算法优化TMD的刚度和阻尼参数;最后,在不同工况下进行仿真分析。结果表明:相对于传统的单目标优化算法,使用MOGWO算法参数优化后的TMD对风电机组具有更好的振动抑制效果。
Abstract
Aiming at the problem of tuning the parameters of the tuned mass damper (TMD) in the offshore turbine floating platform, this paper takes the 5 MW Barge offshore wind turbine as the research object and uses the multi-objective grey wolf optimizer (MOGWO) to optimize the TMD parameter configuration. Firstly, based on the Euler-Lagrange equation, the dynamic models of offshore wind turbine containing TMD in the floating platform is established, and the Levenberg-Marquardt (LM) method is used to identify the unknown parameters of the model. Secondly, considering the control targets of the top of the tower and the base of the tower, the MOGWO algorithm is used to optimize the stiffness and damping parameters of TMD. Finally, simulation analysis is carried out under different working conditions. The results show that compared with the traditional single-objective optimization algorithm, the TMD optimized by MOGWO algorithm has a better vibration control effect on wind turbines.
关键词
振动抑制 /
动力学模型 /
漂浮式风电机组 /
多目标灰狼算法 /
调谐质量阻尼器
Key words
vibration suppression /
dynamic models /
offshore wind turbines /
multi-objective grey wolf optimizer /
tuned mass damper
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张艺三, 胡松, 王芳. 计及恶劣天气约束的海上风能波浪能资源分布研究[J]. 太阳能学报, 2022, 43(12): 200-205.
ZHANG Y S, HU S, WANG F.Distribution of offshore wind and wave energy resources considering severe weather constraints[J]. Acta energiae solaris sinica, 2022, 43(12): 200-205.
[2] MAGAR K T, BALAS M J, FROST S.Direct adaptive control for individual blade pitch control of wind turbines for load reduction[J]. Journal of intelligent material systems and structures, 2015, 26(12): 1564-1572.
[3] JONKMAN J. Influence of control on the pitch damping of a floating wind turbine[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008: AIAA2008-1306.
[4] NAMIK H, STOL K.Individual blade pitch control of a spar-buoy floating wind turbine[J]. IEEE transactions on control systems technology, 2014, 22(1): 214-223.
[5] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[6] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[7] STEWART G, LACKNER M.Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE transactions on control systems technology, 2013, 21(4): 1090-1104.
[8] HE E M, HU Y Q, ZHANG Y.Optimization design of tuned mass damper for vibration suppression of a barge-type offshore floating wind turbine[J]. Proceedings of the institution of mechanical engineers, part M: journal of engineering for the maritime environment, 2017, 231(1): 302-315.
[9] 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动抑制研究[J]. 西北工业大学学报, 2018, 36(2): 238-245.
YANG J J, HE E M, HU Y Q.Vibration mitigation of the barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 238-245.
[10] 张晓峰, 金鑫, 林益帆, 等. 基于TMD的漂浮式风力机振动控制[J]. 太阳能学报, 2020, 41(10): 292-300.
ZHANG X F, JIN X, LIN Y F, et al.Vibration control of floating wind turbines based on TMD[J]. Acta energiae solaris sinica, 2020, 41(10): 292-300.
[11] JONKMAN J M, BUHL M L. FAST user's guide-Updated August2005[R]. NREL/TP-500-38230, 2005.
[12] 邢怀玺, 吴华, 陈游, 等. 基于多目标灰狼算法的干扰资源多效能优化方法[J]. 北京航空航天大学学报, 2020, 46(10): 1990-1998.
XING H X, WU H, CHEN Y, et al.Multi-efficiency optimization method of jamming resource based on multi-objective grey wolf optimizer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1990-1998.
[13] 陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2): 55-61.
CHEN F B, LI Z X, YANG X J.Multi-objective flexible job shop scheduling based on improved NSGA2 algorithm[J]. Industrial engineering journal, 2018, 21(2): 55-61.
[14] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. NREL/TP-500-41958, 2007.
基金
智慧风电场全息状态精准感知与优化决策系统研发及产业化(2021JH1/1040000009)