基于深度学习和广义S变换协同的风速预测

朱哲萱, 马汝为, 曹黎媛, 李春祥

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 664-671.

PDF(2295 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2295 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 664-671. DOI: 10.19912/j.0254-0096.tynxb.2023-0416

基于深度学习和广义S变换协同的风速预测

  • 朱哲萱, 马汝为, 曹黎媛, 李春祥
作者信息 +

WIND SPEED PREDICTION SYNERGISTICALLY BASED ON DEEP LEARNING AND GENERALIZED S TRANSFORM

  • Zhu Zhexuan, Ma Ruwei, Cao Liyuan, Li Chunxiang
Author information +
文章历史 +

摘要

针对实测风速的非平稳性特点,提出一种基于深度学习和时频分析的风速混合预测方法。首先,采用经验模态分解(EMD)将风速分解为若干子层,由此得到趋势分量和脉动分量以降低风速的非线性。根据2个分量的时频特性,采用长短时记忆(LSTM)处理趋势分量,极限学习机(ELM)处理脉动分量。其次,引入广义S变换(GST)来获得预测过程中的时频特性。同时,采用改进的灰狼算法(IGWO)对GST、LSTM和ELM的参数进行优化。最后,以内蒙古某风场实测风速对所提模型进行验证,结果表明该模型具有较高的精度。

Abstract

A hybrid wind speed prediction model based on deep learning and time-frequency analysis is proposed, aiming at the non-stationary characteristics of wind speed. Firstly, empirical mode decomposition (EMD) is used to decompose the wind speed into several sub layers and summarized into a trend component and a fluctuating component to reduce the nonlinearity. According to the time-frequency characteristics of the two components, long short term memory (LSTM) is used to deal with the trend component while extreme learning machine (ELM) with the fluctuating component. Then, generalized S transform (GST) is innovatively introduced to obtain the time-frequency characteristics of the prediction process. Improved grey wolf algorithm (IGWO) is used to optimize the parameters of GST, LSTM and ELM at the same time. Finally, the proposed model is validated with the actual data of a wind farm in Inner Mongolia, and the results show that the model has accuracy.

关键词

风电场 / 风速 / 预测 / 长短时记忆 / 极限学习机 / 广义S变换

Key words

wind farm / wind speed / prediction / long short-term memory / extreme learning machine / generalized S transform

引用本文

导出引用
朱哲萱, 马汝为, 曹黎媛, 李春祥. 基于深度学习和广义S变换协同的风速预测[J]. 太阳能学报. 2024, 45(7): 664-671 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0416
Zhu Zhexuan, Ma Ruwei, Cao Liyuan, Li Chunxiang. WIND SPEED PREDICTION SYNERGISTICALLY BASED ON DEEP LEARNING AND GENERALIZED S TRANSFORM[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 664-671 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0416
中图分类号: TP183   

参考文献

[1] YANG T H, TSAI C C.Using numerical weather model outputs to forecast wind gusts during typhoons[J]. Journal of wind engineering and industrial aerodynamics, 2019, 188: 247-259.
[2] 姜明洋, 徐丽, 张开军, 等. 基于季节指数调整的循环神经网络风速时间序列预测[J]. 太阳能学报, 2022, 43(2): 444-450.
JIANG M Y, XU L, ZHANG K J, et al.Recurrent neural network prediction of wind speed time series based on seasonal exponential adjustment[J]. Acta energiae solaris sinica, 2022, 43(2): 444-450.
[3] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al.Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[4] 刘栋, 魏霞, 王维庆, 等. 基于VMD-WPE和SSA-ELM的短期风电功率预测研究[J]. 太阳能学报, 2022, 43(12): 360-367.
LIU D, WEI X, WANG W Q, et al.Short term wind power forecasting based on VMD-WPE and SSA-ELM[J]. Acta energiae solaris sinica, 2022, 43(12): 360-367.
[5] 赵鑫, 陈臣鹏, 毕贵红, 等. 基于PAM-SSD-LSTM的短期风速预测[J]. 太阳能学报, 2023, 44(1): 281-288.
ZHAO X, CHEN C P, BI G H, et al.Short-term wind speed prediction based on PAM-SSD-LSTM[J]. Acta energiae solaris sinica, 2023, 44(1): 281-288.
[6] STOCKWELL R G, MANSINHA L, LOWE R P.Localization of the complex spectrum: the S transform[J]. IEEE transactions on signal processing, 1996, 44(4): 998-1001.
[7] 陈学华, 贺振华, 黄德济. 广义S变换及其时频滤波[J]. 信号处理, 2008, 24(1): 28-31.
CHEN X H, HE Z H, HUANG D J.Generalized S transform and its time-frequency filtering[J]. Signal processing, 2008, 24(1): 28-31.
[8] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London series A, 1998, 454(1971): 903-998.
[9] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[10] HEIDARI A A, PAHLAVANI P.An efficient modified grey wolf optimizer with Levy flight for optimization tasks[J]. Applied soft computing, 2017, 60: 115-134.
[11] TU Q, CHEN X C, LIU X C.Hierarchy strengthened grey wolf optimizer for numerical optimization and feature selection[J]. IEEE access, 2019, 7: 78012-78028.
[12] NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert systems with applications, 2021, 166: 113917.
[13] STANKOVIC L.An analysis of some time-frequency and time-scale distributions[J]. Annales des télécommunications, 1994, 49(9): 505-517.
[14] DJUROVIC I, STANKOVIC L.A virtual instrument for time-frequency analysis[J]. IEEE transactions on instrumentation and measurement, 1999, 48(6): 1086-1092.
[15] STANKOVIC L.Highly concentrated time-frequency distributions: pseudo quantum signal representation[J]. IEEE transactions on signal processing, 1997, 45(3): 543-551.
[16] PINNEGAR C R, MANSINHA L.The S-transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1): 381-385.
[17] DJUROVIĆ I, SEJDIĆ E, JIANG J.Frequency-based window width optimization for S-transform[J]. AEU - international journal of electronics and communications, 2008, 62(4): 245-250.
[18] STANKOVIĆ L.A measure of some time-frequency distributions concentration[J]. Signal processing, 2001, 81(3): 621-631.
[19] HONG H P.Response and first passage probability of linear elastic SDOF systems subjected to nonstationary stochastic excitation modelled through S-transform[J]. Structural safety, 2021, 88: 102007.
[20] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[21] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2005: 985-990.
[22] HONG H P, CUI X Z.Use of transform pairs to represent and simulate nonstationary non-Gaussian process with applications[J]. Structural safety, 2023, 100: 102267.
[23] LI C X, LUO K X, CAO L Y.Data-driven simulation of multivariate nonstationary wind velocity with explicit introduction of the time-varying coherence functions[J]. Journal of wind engineering and industrial aerodynamics, 2022, 220: 104872.

基金

国家自然科学基金(52108460)

PDF(2295 KB)

Accesses

Citation

Detail

段落导航
相关文章

/