水上光伏覆盖对明渠水质的影响规律研究

闫琳琳, 练继建, 姚烨, 宋芷萱

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 548-557.

PDF(2128 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2128 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 548-557. DOI: 10.19912/j.0254-0096.tynxb.2023-0417

水上光伏覆盖对明渠水质的影响规律研究

  • 闫琳琳1,2, 练继建1,2, 姚烨, 宋芷萱1,2
作者信息 +

EFFECTS OF WATER PHOTOVOLTAIC PROJECT ON WATER QUALITY IN OPEN CHANNELS

  • Yan Linlin1,2, Lian Jijian1,2, Yao Ye, Song Zhixuan1,2
Author information +
文章历史 +

摘要

水上光伏带来的太阳短波辐照度变化对缓解输水明渠藻类增殖问题的效果亟需评估。以南水北调中线干渠为例,建立干渠安阳河节制闸至坟庄河节制闸渠段的水动力和水质模型,分析比较明渠水面悬浮式覆盖水上光伏带来的太阳短波辐照度变化和水上光伏不同覆盖位置对渠道水温和水质的影响规律。研究表明:在开展水上光伏项目时,渠道接收的太阳短波辐照度降低会使得水温、藻生物量和溶解氧含量下降,营养盐含量有所上升。太阳短波辐照度降低50%后,藻生物量开始逐渐降低。在覆盖率和透射率一定的情况下,不同覆盖位置情景下对藻生物量的削减峰值区别较小。当太阳短波辐照度由高到低逐渐变化时,流速变化对藻生物量的影响幅度呈先升高后下降趋势。

Abstract

It is urgent to analyze the effect of solar shortwave radiation reduction caused by water photovoltaic on alleviating algae proliferation in open channels. Taking the middle route of South-to-North Water Diversion project as an example, the hydrodynamic and water quality coupling model of the main canal from Anyang River control gate to Fenzhuang River control gate was established. The influence of solar shortwave radiation reduction caused by water photovoltaic covering on the open channel and the influence of different cover positions on water temperature and water quality were analyzed and compared. The coupling effect of flow velocity and solar shortwave radiation on algae biomass was studied. The results showed that when carrying out the water photovoltaic project, the reduction of the solar shortwave radiation received by the channel will lower the water temperature, algae biomass and dissolved oxygen concentration, but increase the nutrient concentration. When the solar shortwave radiation decreases by 50%, the algae biomass begins to reduce gradually. Under the same coverage rate and transmittance scenario, the peak reduction differences of algae biomass among different covering locations are small. When the solar shortwave radiation amount gradually changes from high to low, the influence degree of velocity change on algae biomass shows a trend of first increasing and then decreasing.

关键词

光伏 / 水质 / 太阳短波辐照度 / 南水北调中线工程 / 流速

Key words

photovoltaics / water quality / solar shortwave radiation / middle route of South-to-North Water Diversion project / velocity

引用本文

导出引用
闫琳琳, 练继建, 姚烨, 宋芷萱. 水上光伏覆盖对明渠水质的影响规律研究[J]. 太阳能学报. 2024, 45(7): 548-557 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0417
Yan Linlin, Lian Jijian, Yao Ye, Song Zhixuan. EFFECTS OF WATER PHOTOVOLTAIC PROJECT ON WATER QUALITY IN OPEN CHANNELS[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 548-557 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0417
中图分类号: TV68    X522   

参考文献

[1] 中国光伏行业协会. 国家能源局:1—3月光伏新增装机量33.66GW,同比增长154.81%[EB/OL]. http://www.chinapv.org.cn/policy/1231.html.
China Photovoltaic Industry Association. National Energy Administration: from January to March, the newly installed photovoltaic capacity was 33.66 GW, an increase of 154.81%[EB/OL]. http://www.chinapv.org.cn/policy/1231.html.
[2] WOOD MACKENZIE P A R. Floating solar landscape2022[EB/OL]. https://www.woodmac.com/search/?q=Floating+Solar+Landscape+2021+report.
[3] HAYIBO K S, MAYVILLE P, KAILEY R K, et al.Water conservation potential of self-funded foam-based flexible surface-mounted floatovoltaics[J]. Energies, 2020, 13(23): 6285.
[4] 练继建, 王海军, 熊浩. 一种长距离输水渠道消冰、抑藻的装置: CN111364417A[P].2020-07-03.
LIAN J J, WANG H J, XIONG H. Device for eliminating ice and inhibiting algae of long-distance water delivery channel: CN111364417A[P].2020-07-03.
[5] YE B, JIANG J J, LIU J G.Feasibility of coupling PV system with long-distance water transfer: a case study of China's “South-to-North water diversion”[J]. Resources, conservation and recycling, 2021, 164: 105194.
[6] KUMAR M, KUMAR A.Experimental validation of performance and degradation study of canal-top photovoltaic system[J]. Applied energy, 2019, 243: 102-118.
[7] CARPENTIERI G, SKELTON R E, FRATERNALI F.A minimal mass deployable structure for solar energy harvesting on water canals[J]. Structural and multidisciplinary optimization, 2017, 55(2): 449-458.
[8] 李国庆, Armstrong Alona, 刘哲. 光伏电场对地表温度的影响研究[J]. 太阳能学报, 2020, 41(12): 117-123.
LI G Q, ALONA A, LIU Z.Effect of solar photovoltaic power field on land surface temperature[J]. Acta energiae solaris sinica, 2020, 41(12): 117-123.
[9] 霍玉佼. 透光薄膜光伏幕墙建筑集成的空间光环境与能量特性研究[D]. 天津: 天津大学, 2016.
HUO Y J.Research on daylight environment and energy performance of building integrated see-through thin film photovoltaic curtain wall[D]. Tianjin: Tianjin University, 2016.
[10] 宋鑫, 贝耀平, 袁丙青, 等. 水上光伏电站对淮南采煤沉陷积水区水生态环境的影响[J]. 水资源保护, 2022, 38(5): 204-211.
SONG X, BEI Y P, YUAN B Q, et al.Influence of floating photovoltaic power plants on water ecological environment in coal mining subsidence water area of Huainan City[J]. Water resources protection, 2022, 38(5): 204-211.
[11] MA C, LIU Z, HE W.Water surface photovoltaic along long-distance water diversion projects and its co-benefits[J]. Journal of cleaner production, 2022, 331: 129924.
[12] JI Q F, LI K F, WANG Y M, et al.Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station[J]. Renewable energy, 2022, 195: 946-956.
[13] ZHANG D W, HAN X L, ZHONG Q, et al.Online monitoring and sampling analysis of siltation in the middle route of the south-to-north water diversion project[J]. Frontiers in environmental science, 2022, 10: 927588.
[14] LI P Y, YAO Y, LIAN J J, et al.Effect of thermal stratified flow on algal blooms in a tributary bay of the Three Gorges Reservoir[J]. Journal of hydrology, 2021, 601: 126648.
[15] 王鸿洋, 杨霞, 马骏, 等. 三峡水库汛期中小洪水调度对支流水华的影响[J]. 水力发电学报, 2021, 40(7): 61-72.
WANG H Y, YANG X, MA J, et al.Influence of regulating small and medium floods on algal blooms in tributaries of Three Gorges Reservoir in flood season[J]. Journal of hydroelectric engineering, 2021, 40(7): 61-72.
[16] 崔巍, 刘哲, 穆祥鹏, 等. 南水北调中线总干渠藻类的生态调度[J]. 南水北调与水利科技(中英文), 2022(1): 79-86.
CUI W, LIU Z, MU X P, et al.Ecological regulation of algae in Middle Route of South-to-North Water Diversion Project[J]. South-to-north water transfers and water science & technology, 2022(1): 79-86.
[17] 张春梅, 米武娟, 许元钊, 等. 南水北调中线总干渠浮游植物群落特征及水环境评价[J]. 水生态学杂志, 2021, 42(3): 47-54.
ZHANG C M, MI W J, XU Y Z, et al.Phytoplankton community characteristics and water environment assessment in the main channel of the middle route of the south-to-north water diversion project[J]. Journal of hydroecology, 2021, 42(3): 47-54.
[18] HARDENBICKER P, ROLINSKI S, WEITERE M, et al.Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers[J]. International review of hydrobiology, 2014, 99(4): 287-299.
[19] BROOKES J D, CAREY C C.Ecology. Resilience to blooms[J]. Science, 2011, 334(6052): 46-47.
[20] DOU M, MA X K, ZHANG Y, et al.Modeling the interaction of light and nutrients as factors driving lake eutrophication[J]. Ecological modelling, 2019, 400: 41-52.
[21] ISHIKAWA M, HAAG I, KRUMM J, et al.The effect of stream shading on the inflow characteristics in a downstream reservoir[J]. River research and applications, 2021, 37(7): 943-954.
[22] CHRISTOPHER RUTHERFORD J, HAIDEKKER S, MATHESON F E, et al.Modelled effects of channel orientation and tree canopy shape on average shade in streams[J]. New Zealand journal of marine and freshwater research, 2023, 57(1): 22-46.
[23] MAESTRE-VALERO J F, MARTINEZ-ALVAREZ V, NICOLAS E. Physical, chemical and microbiological effects of suspended shade cloth covers on stored water for irrigation[J]. Agricultural water management, 2013, 118: 70-78.
[24] MAESTRE-VALERO J F, MARTÍNEZ-ALVAREZ V, GALLEGO-ELVIRA B, et al. Effects of a suspended shade cloth cover on water quality of an agricultural reservoir for irrigation[J]. Agricultural water management, 2011, 100(1): 70-75.
[25] 魏琦, 白保华, 何继江, 等. 能源与水利结合模式探索: 以南水北调西线光伏天河工程为例[J]. 工程科学与技术, 2022, 54(1): 16-22.
WEI Q, BAI B H, HE J J, et al.Exploring the mode of energy and hydraulic engineering combination: an example of the photovoltaic Tianhe Project of the south-to-north water diversion west route project[J]. Advanced engineering sciences, 2022, 54(1): 16-22.
[26] 姚烨. 基于抑制近坝支流水华的三峡水库非汛期优化调度研究[D]. 天津: 天津大学, 2014.
YAO Y.Research on Three Gorges Reservoir Operation for Non-flood Season Based on Controlling Algal Blooms in Near-dam Tributaries[D]. Tianjin: Tianjin University, 2014.
[27] YANG P P, XING Z K, FONG D A, et al.Observations of vertical eddy diffusivities in a shallow tropical reservoir[J]. Journal of hydro-environment research, 2015, 9(3): 441-451.
[28] 李亚军, 程瑶, 王雨春. 三峡库区典型支流水质模型及其参数敏感性分析[J]. 人民长江, 2017, 48(16): 19-24.
LI Y J, CHENG Y, WANG Y C.Parameter sensitivity analysis of water quality model for typical tributary in TGP reservoir area[J]. Yangtze river, 2017, 48(16): 19-24.
[29] WELLS S A.CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.5,part 3: input and output files user manual[R]. OR 97207-0751, 2021.
[30] TERRY J A, SADEGHIAN A, BAULCH H M, et al.Challenges of modelling water quality in a shallow prairie lake with seasonal ice cover[J]. Ecological modelling, 2018, 384: 43-52.
[31] JING Z, CHEN H, CAO H Q, et al.Spatial and temporal characteristics, influencing factors and prediction models of water quality and algae in early stage of Middle Route of South-North Water Diversion Project[J]. Environmental science and pollution research international, 2022, 29(16): 23520-23544.
[32] 陈啸. 长距离输水渠道浮游藻类空间变化规律研究[D]. 北京: 清华大学, 2021.
CHEN X.Study on the phytoplankton variation pattern along a long distance water transfer canal[D]. Beijing:Tsinghua University, 2021.
[33] MORIASI D N, GITAU M W, PAI N, et al.Hydrologic and water quality models: performance measures and evaluation criteria[J]. Transactions of the asabe, 2015, 58(6): 1763-1785.
[34] TANG C H, YI Y J, YANG Z F, et al.Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake[J]. Journal of cleaner production, 2018, 174: 577-590.
[35] YAO X, HONG Z, LEMCKERT C J, et al.Evaporation reduction by suspended and floating covers: overview, modelling and efficiency[R]. Urban Water Security Research Alliance Technical Report No. 28, 2010.
[36] LI P D, GAO X Q, JIANG J X, et al.Characteristic analysis of water quality variation and fish impact study of fish-lighting complementary photovoltaic power station[J]. Energies, 2020, 13(18): 4822.
[37] 黄莹莹, 陈雪初, 孔海南, 等. 曝气对遮光条件下藻类消亡的影响[J]. 环境污染与防治, 2008, 30(10): 44-47.
HUANG Y Y, CHEN X C, KONG H N, et al.The effect on algae decay by aeration under light-shading condition[J]. Environmental pollution & control, 2008, 30(10): 44-47.
[38] 梁韩英, 程晓薇, 李俊鹏, 等. 壳聚糖联合聚合氯化铝强化混凝除藻的参数优化[J]. 中国环境科学, 2019, 39(6): 2568-2576.
LIANG H Y, CHENG X W, LI J P, et al.Parametric optimization of cyanobacteria coagulation by combining chitosan and polyaluminum chloride[J]. China environmental science, 2019, 39(6): 2568-2576.
[39] EL BARADEI S, AL SADEQ M.Effect of solar canals on evaporation, water quality, and power production: an optimization study[J]. Water, 2020, 12(8): 2103.
[40] 王燕妮, 于华明, 于江华. 水面光伏局地生态效应观测事实分析[J]. 太阳能学报, 2022, 43(9): 38-44.
WANG Y N, YU H M, YU J H.Observation of surface photovoltaic on local ecology[J]. Acta energiae solaris sinica, 2022, 43(9): 38-44.
[41] WANG T W, CHANG P H, HUANG Y S, et al.Effects of floating photovoltaic systems on water quality of aquaculture ponds[J]. Aquaculture research, 2022, 53(4): 1304-1315.
[42] BAX V, VAN DE LAGEWEG W I, HOOSEMANS R, et al. Floating photovoltaic pilot project at the Oostvoornse Lake: assessment of the water quality effects of three different system designs[J]. Energy reports, 2023, 9: 1415-1425.
[43] EXLEY G, PAGE T, THACKERAY S J, et al.Floating solar panels on reservoirs impact phytoplankton populations: a modelling experiment[J]. Journal of environmental management, 2022, 324: 116410.
[44] 李飞鹏, 高雅, 张海平, 等. 流速对浮游藻类生长和种群变化影响的模拟试验[J]. 湖泊科学, 2015, 27(1): 44-49.
LI F P, GAO Y, ZHANG H P, et al.Simulation experiment on the effect of flow velocity on phytoplankton growth and composition[J]. Journal of lake sciences, 2015, 27(1): 44-49.
[45] YANG P P, CHUA L H C, IRVINE K N, et al. Radiation and energy budget dynamics associated with a floating photovoltaic system[J]. Water research, 2021, 206: 117745.
[46] 张凯珂, 冉茂宇. 植物布置模式对光伏组件和屋面被动降温及水分蒸发的影响[J]. 太阳能学报, 2022, 43(10): 88-93.
ZHANG K K, RAN M Y.Effect of plants layout mode on passive cooling of photovoltaic module and roof, and water evaporation[J]. Acta energiae solaris sinica, 2022, 43(10): 88-93.
[47] 郑隽卿, 罗勇, 常蕊, 等. 大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报, 2023, 44(8): 253-265.
ZHENG J Q, LUO Y, CHANG R, et al.Study on impact of large-scaled photovoltaic development on local climate and ecosystem[J]. Acta energiae solaris sinica, 2023, 44(8): 253-265.

基金

国家自然科学基金联合基金重点支持项目(U20A20316)

PDF(2128 KB)

Accesses

Citation

Detail

段落导航
相关文章

/