基于多变量DSD-LSTM模型的有效波高预测

庞军恒, 黄炜楠, 董胜

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 121-127.

PDF(3262 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3262 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 121-127. DOI: 10.19912/j.0254-0096.tynxb.2023-0421

基于多变量DSD-LSTM模型的有效波高预测

  • 庞军恒, 黄炜楠, 董胜
作者信息 +

PREDICTION OF SIGNIFICANT WAVE HEIGHT BASED ON MULTIVARIABLE DSD-LSTM MODEL

  • Pang Junheng, Huang Weinan, Dong Sheng
Author information +
文章历史 +

摘要

利用改进的完全集合经验模态分解(ICEEMDAN)和递归量化分析方法设计一种新的信号分解算法(DSD),该算法将原始信号分解为确定性成分和随机性成分。考虑风速、风向对波高的影响前提下,将DSD算法与长短时记忆网络(LSTM)结合建立多变量混合模型DSD-LSTM-m进行有效波高的预测。该模型与单独的LSTM模型相比明显提高了预测精度,与单变量混合模型DSD-LSTM-u相比具有更好的预测效果。

Abstract

A new signal decomposition algorithm (DSD) is designed by using the ICEEMDAN and recursive quantification analysis method, which divides the original signal into deterministic and stochastic components. Considering the influence of wind speed and wind direction on wave height, a multi-variable DSD-LSTM model was established by combining DSD algorithm with Long and Short-Term Memory network (LSTM) to predict significant wave height. The proposed model significantly improved the prediction accuracy compared to the single LSTM model and has better prediction performance compared to the univariate hybrid model DSD-LSTM-u.

关键词

波浪能 / 波高预测 / 时间序列 / 信号处理 / 深度学习 / 长短时记忆网络

Key words

wave energy / wave height predictim / time series / signal processing / deep learning / long and short-memory network

引用本文

导出引用
庞军恒, 黄炜楠, 董胜. 基于多变量DSD-LSTM模型的有效波高预测[J]. 太阳能学报. 2024, 45(7): 121-127 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0421
Pang Junheng, Huang Weinan, Dong Sheng. PREDICTION OF SIGNIFICANT WAVE HEIGHT BASED ON MULTIVARIABLE DSD-LSTM MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 121-127 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0421
中图分类号: P743.2   

参考文献

[1] 万勇, 张杰, 孟俊敏, 等. 基于ERA-Interim再分析数据的OE-W01区块波浪能资源评估[J]. 资源科学, 2014, 36(6): 1278-1287.
WAN Y, ZHANG J, MENG J M, et al.Assessment of wave energy resources for the OE-W01 area based on ERA-Interim reanalysis data[J]. Resources science, 2014, 36(6): 1278-1287.
[2] AKPıNAR A, KÖMÜRCÜ M İ. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data[J]. Applied energy, 2013, 101: 502-512.
[3] HENFRIDSSON U, NEIMANE V, STRAND K, et al.Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak[J]. Renewable energy, 2007, 32(12): 2069-2084.
[4] ÖZGER M, ALTUNKAYNAK A, ŞEN Z.Statistical investigation of expected wave energy and its reliability[J]. Energy conversion and management, 2004, 45(13/14): 2173-2185.
[5] MAHJOOBI J, ETEMAD-SHAHIDI A.An alternative approach for the prediction of significant wave heights based on classification and regression trees[J]. Applied ocean research, 2008, 30(3): 172-177.
[6] GUEDES SOARES C, FERREIRA A M.Representation of non-stationary time series of significant wave height with autoregressive models[J]. Probabilistic engineering mechanics, 1996, 11(3): 139-148.
[7] GE M, KERRIGAN E C.Short-term ocean wave forecasting using an autoregressive moving average model[C]//2016 UKACC 11th International Conference on Control (CONTROL). Belfast, UK, 2016: 1-6.
[8] GROUP T W.The WAM model: a third generation ocean wave prediction model[J]. Journal of physical oceanography, 1988, 18(12): 1775-1810.
[9] SHAMSHIRBAND S, MOSAVI A, RABCZUK T, et al.Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines[J]. Engineering applications of computational fluid mechanics, 2020, 14(1): 805-817.
[10] KUMAR N K, SAVITHA R, AL MAMUN A.Ocean wave height prediction using ensemble of extreme learning Machine[J]. Neurocomputing, 2018, 277: 12-20.
[11] 张振全, 李醒飞, 杨少波. 基于AR-SVR模型的有效波高短期预测[J]. 太阳能学报, 2021, 42(7): 15-20.
ZHANG Z Q, LI X F, YANG S B.Short-term prediction of significant wave height based on AR-SVR model[J]. Acta energiae solaris sinica, 2021, 42(7): 15-20.
[12] 王燕, 钟建, 张志远. 支持向量回归的机器学习方法在海浪预测中的应用[J]. 海洋预报, 2020, 37(3): 29-34.
WANG Y, ZHONG J, ZHANG Z Y.Application of support vector regression in significant wave height forecasting[J]. Marine forecasts, 2020, 37(3): 29-34.
[13] FAN S, XIAO N, DONG S.A novel model to predict significant wave height based on long short-term memory network[J]. Ocean engineering, 2020, 205: 107298.
[14] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London series A, 1998, 454(1971): 903-998.
[15] WU Z H, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41.
[16] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic, 2011: 4144-4147.
[17] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[18] KANTZ H, SCHREIBER T.Nonlinear time series analysis[M]. Cambridge: Cambridge University Press, 1997.
[19] ECKMANN J P, KAMPHORST S O, RUELLE D.Recurrence plots of dynamical systems[J]. Europhysics letters (EPL), 1987, 4(9): 973-977.
[20] ZBILUT J P, WEBBER C L.Embeddings and delays as derived from quantification of recurrence plots[J]. Physics letters A, 1992, 171(3/4): 199-203.
[21] RIOS R A, DE MELLO R F. Improving time series modeling by decomposing and analyzing stochastic and deterministic influences[J]. Signal processing, 2013, 93(11): 3001-3013.
[22] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

基金

国家自然科学基金(52171284)

PDF(3262 KB)

Accesses

Citation

Detail

段落导航
相关文章

/