飞轮储能辅助火电机组一次调频及其性能评价

韩旭, 刘仲稳, 王小东, 孙春启, 赵建红, 韩中合

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 163-171.

PDF(2592 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2592 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 163-171. DOI: 10.19912/j.0254-0096.tynxb.2023-0435

飞轮储能辅助火电机组一次调频及其性能评价

  • 韩旭1,2, 刘仲稳1, 王小东1, 孙春启1, 赵建红1, 韩中合1,2
作者信息 +

FLYWHEEL ENERGY STORAGE ASSISTS THERMAL POWER UNIT FREQUENCY REGULATION SIMULATION

  • Han Xu1,2, Liu Zhongwen1, Wang Xiaodong1, Sun Chunqi1, Zhao Jianhong1, Han Zhonghe1,2
Author information +
文章历史 +

摘要

为促进太阳能、风能等新能源消纳,进一步拓宽火电储能技术升级和灵活性改造渠道,助力双碳目标和新型电力系统建设,提出增设储能系统辅助火电机组调频以解决火电机组爬坡慢、机组振荡不稳定等问题。基于国内外研究现状,提出机组以及储能系统荷电状态出力控制策略模型,通过Matlab/Simulink搭建两区域电网进行模拟仿真。结果表明,在阶跃扰动下区域1机组耦合1 MW飞轮储能系统后,峰值降至1.93×10-3 pu,降低4×10-4 pu,占原频率波动率的9.39%,机组实际出力从2.45×10-2 pu降至1.61×10-2 pu,降低34%。结果表明,在外界相同扰动条件下,采用飞轮储能辅助火电机组调频可有效减小系统频率波动量,减少汽轮机输出功率波动,提升调频性能。

Abstract

The rapid development of new energy sources has had a certain impact on the original power grid structure, leading to increased wear and tear of unit equipment, which has had a certain impact on the stability, safety, and economy of thermal power unit operation. Therefore, it is proposed to add an energy storage system to solve the above problems. Based on the current research status at home and abroad, a unit, steam turbine, and SOC based output control strategy model are proposed, and a two region power grid is built through Matlab/Simulink for simulation and simulation. The results indicate that under step disturbance, after coupling the 1 MW wheel energy storage system with unit 1 in region 1, the peak value drops to 1.93×10-3 pu, reduced by 4×10-4 pu, accounting for 9.39% of the original frequency fluctuation, and the actual output of the unit ranges from 2.45×10-2 pu reduced to 1.61×10-2 pu, reduced by 34%. The results indicate that under the same external disturbance conditions, using flywheel energy storage to assist in frequency regulation of thermal power units can effectively reduce system frequency fluctuations, reduce turbine output power fluctuations, and improve frequency regulation performance.

关键词

飞轮储能 / 一次调频 / 控制策略 / 火电机组 / 评价指标

Key words

flywheel energy storage / primary frequency modulation / control strategy / thermal power units / evaluation indicators

引用本文

导出引用
韩旭, 刘仲稳, 王小东, 孙春启, 赵建红, 韩中合. 飞轮储能辅助火电机组一次调频及其性能评价[J]. 太阳能学报. 2024, 45(7): 163-171 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0435
Han Xu, Liu Zhongwen, Wang Xiaodong, Sun Chunqi, Zhao Jianhong, Han Zhonghe. FLYWHEEL ENERGY STORAGE ASSISTS THERMAL POWER UNIT FREQUENCY REGULATION SIMULATION[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 163-171 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0435
中图分类号: TK26    TM621   

参考文献

[1] 平悦, 单永娟, 李诚. 碳中和目标下风电消纳量的影响因素分析[J]. 太阳能学报, 2022, 43(11): 235-241.
PING Y, SHAN Y J, LI C.Analysis of influencing factors of wind power utilization under carbon neutral target[J]. Acta energiae solaris sinica, 2022, 43(11): 235-241.
[2] GEORGIOUS R, REFAAT R, GARCIA J, et al.Review on energy storage systems in microgrids[J]. Electronics, 2021, 10(17): 2134.
[3] BOCKLISCH T.Hybrid energy storage systems for renewable energy applications[J]. Energy procedia, 2015, 73: 103-111.
[4] 黄怡涵, 徐飞, 郝玲, 等. 用于一次调频分析的汽包锅炉模型及参数在线确定方法[J]. 中国电机工程学报, 2023, 43(21): 8332-8344.
HUANG Y H, XU F, HAO L, et al.Drum boiler modeling and online parameter identification for analysis of primary frequency regulation[J]. Proceedings of the CSEE, 2023, 43(21): 8332-8344.
[5] KARRARI S, DE CARNE G, NOE M.Model validation of a high-speed flywheel energy storage system using power hardware-in-the-loop testing[J]. Journal of energy storage, 2021, 43: 103177.
[6] 郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报, 2023, 35(11): 1-9.
GUO Q, CHEN C D, HU Y, et al.Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9.
[7] HAN X, LIU Z W.Research on frequency modulation capacity configuration and control strategy of multiple energy storage auxiliary thermal power unit[J]. Journal of energy storage, 2023, 73(Part C): 109186.
[8] SEBASTIÁN R, PEÑA ALZOLA R. Flywheel energy storage systems: review and simulation for an isolated wind power system[J]. Renewable and sustainable energy reviews, 2012, 16(9): 6803-6813.
[9] PERALTA D, CAÑIZARES C, BHATTACHARYA K. Practical modeling of flywheel energy storage for primary frequency control in power grids[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA, 2018: 1-5.
[10] 洪烽, 梁璐, 逄亚蕾, 等. 基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J]. 中国电机工程学报, 2023, 43(21): 8366-8378.
HONG F, LIANG L, PANG Y L, et al.Research on coordinated frequency control of thermal power-flywheel energy storage system based on the real-time prediction of output increment[J]. Proceedings of the CSEE, 2023, 43(21): 8366-8378.
[11] 严干贵, 王铭岐, 段双明, 等. 考虑荷电状态恢复的储能一次调频控制策略[J]. 电力系统自动化, 2022, 46(21): 52-61.
YAN G G, WANG M Q, DUAN S M, et al.Primary frequency regulation control strategy of energy storage considering state of charge recovery[J]. Automation of electric power systems, 2022, 46(21): 52-61.
[12] 李军徽, 范兴凯, 穆钢, 等. 10 kW/20 kWh锂电池储能协同风电一次调频备用的实验验证[J]. 太阳能学报, 2018, 39(5): 1373-1379.
LI J H, FAN X K, MU G, et al.Experimental analysis of 10 kW/20 kWh lithium battery energy storage system witch combined with wind power as primary frequency modulation reserve[J]. Acta energiae solaris sinica, 2018, 39(5): 1373-1379.
[13] 田云峰, 郭嘉阳, 刘永奇, 等. 用于电网稳定性计算的再热凝汽式汽轮机数学模型[J]. 电网技术, 2007, 31(5): 39-44.
TIAN Y F, GUO J Y, LIU Y Q, et al.A mathematical model of rehear turbine for power grid stability calculation[J]. Power system technology, 2007, 31(5): 39-44.
[14] 姚路锦, 王玮, 蔡玮, 等. 提升风电调频性能的源储协同控制策略[J]. 动力工程学报, 2023, 43(2): 126-135, 193.
YAO L J, WANG W, CAI W, et al.Cooperative control strategy of source and storage for improving frequency regulation performance of wind power[J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 126-135, 193.
[15] MERCIER P, CHERKAOUI R, OUDALOV A.Optimizing a battery energy storage system for frequency control application in an isolated power system[J]. IEEE transactions on power systems, 2009, 24(3): 1469-1477.
[16] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686.
HE L X, LI W Y.Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy storage science and technology, 2021, 10(5): 1679-1686.
[17] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[18] 赵婷, 戴义平, 高林. 多区域电网一次调频能力分布对电网安全稳定运行的影响[J]. 中国电力, 2006, 39(5): 18-22.
ZHAO T, DAI Y P, GAO L.Influence of primary frequency control ability distribution on power system security and stability[J]. Electric power, 2006, 39(5): 18-22.
[19] 周传迪, 柳亦兵, 朱万程, 等. 基于有限单元和模型降阶的储能飞轮转子动力学建模及分析[J]. 动力工程学报, 2022, 42(2): 182-189.
ZHOU C D, LIU Y B, ZHU W C, et al.Dynamic modeling and analysis of energy storage flywheel rotor based on finite element and model reduction[J]. Journal of Chinese Society of Power Engineering, 2022, 42(2): 182-189.
[20] 王刚, 郝涛, 张江南, 等. 火电机组一次调频合格率的影响因素分析[J]. 中国电力, 2014, 47(2): 23-26.
WANG G, HAO T, ZHANG J N, et al.Analysis on influencing factors of passing rate of primary frequency regulation of thermal power units[J]. Electric power, 2014, 47(2): 23-26.

基金

保定市科技计划(2272P008); 国家自然科学基金(52106010); 中央高校基本科研业务费专项资金(2022MS084)

PDF(2592 KB)

Accesses

Citation

Detail

段落导航
相关文章

/