大规模可再生能源直接电解碱液制氢关键科学问题

夏杨红, 韦巍, 程浩然, 周永智, 赵波, 章雷其

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 224-231.

PDF(2548 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2548 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 224-231. DOI: 10.19912/j.0254-0096.tynxb.2023-0444

大规模可再生能源直接电解碱液制氢关键科学问题

  • 夏杨红1, 韦巍1, 程浩然1, 周永智1, 赵波2, 章雷其2
作者信息 +

KEY SCIENTIFIC PROBLEMS FOR LARGE-SCALE HYDROGEN PRODUCTION FROM ALKALINE WATER ELECTROLYZERS DIRECTLY DRIVEN BY RENEWABLE ENERGY

  • Xia Yanghong1, Wei Wei1, Cheng Haoran1, Zhou Yongzhi1, Zhao Bo2, Zhang Leiqi2
Author information +
文章历史 +

摘要

从效率与一致性、功率调节灵活性、气体纯度等方面阐述大规模可再生能源直接电解碱液制氢的相关科学问题,进行相应的机理分析,并给出可能的技术路径,以期提升可再生能源与碱液电解槽之间的匹配性,从而推动可再生能源电解制氢规模化应用。

Abstract

From the views of efficiency and consistency, flexibility of power regulating, gas purity, this paper explains the related scientific problems about hydrogen production from renewable energy sources, reveals corresponding mechanisms and gives the possible solutions. It is hoped that the matching between renewable energy sources and alkaline water electrolyzer can be enhanced. Furthermore, hydrogen production from renewable energy sources can be generalized.

关键词

制氢 / 电解槽 / 可再生能源 / 电解效率 / 灵活性

Key words

hydrogen production / electrolyzer / renewable energy / electrolysis efficiency / flexibility

引用本文

导出引用
夏杨红, 韦巍, 程浩然, 周永智, 赵波, 章雷其. 大规模可再生能源直接电解碱液制氢关键科学问题[J]. 太阳能学报. 2024, 45(7): 224-231 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0444
Xia Yanghong, Wei Wei, Cheng Haoran, Zhou Yongzhi, Zhao Bo, Zhang Leiqi. KEY SCIENTIFIC PROBLEMS FOR LARGE-SCALE HYDROGEN PRODUCTION FROM ALKALINE WATER ELECTROLYZERS DIRECTLY DRIVEN BY RENEWABLE ENERGY[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 224-231 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0444
中图分类号: TQ151.1   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 杨策, 孙伟卿, 韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47(1): 338-349.
YANG C, SUN W Q, HAN D.Power system flexibility evaluation considering renewable energy accommodation[J]. Power system technology, 2023, 47(1): 338-349.
[3] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
XIE X R, HE J B, MAO H Y, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[4] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042.
LI M J, YU Z, XU T, et al.Study of complex oscillation caused by renewable energy integration and its solution[J]. Power system technology, 2017, 41(4): 1035-1042.
[5] 叶林, 王凯丰, 赖业宁, 等. 低惯量下电力系统频率特性分析及电池储能调频控制策略综述[J]. 电网技术, 2023, 47(2): 446-464.
YE L, WANG K F, LAI Y N, et al.Review of frequency characteristics analysis and battery energy storage frequency regulation control strategies in power system under low inertia level[J]. Power system technology, 2023, 47(2): 446-464.
[6] 叶畅, 柳丹, 杨欣宜, 等. 基于最小惯量评估的高比例新能源电力系统优化运行策略[J]. 电网技术, 2023, 47(2): 502-516.
YE C, LIU D, YANG X Y, et al.Optimal operation strategy of high proportion new energy power system based on minimum inertia evaluation[J]. Power system technology, 2023, 47(2): 502-516.
[7] WANG M Y, WANG Z, GONG X Z, et al.The intensification technologies to water electrolysis for hydrogen production-a review[J]. Renewable and sustainable energy reviews, 2014, 29: 573-588.
[8] NIKOLAIDIS P, POULLIKKAS A.A comparative overview of hydrogen production processes[J]. Renewable and sustainable energy reviews, 2017, 67: 597-611.
[9] DAWOOD F, ANDA M, SHAFIULLAH G M.Hydrogen production for energy: an overview[J]. International journal of hydrogen energy, 2020, 45(7): 3847-3869.
[10] ISHAQ H, DINCER I, CRAWFORD C.A review on hydrogen production and utilization: challenges and opportunities[J]. International journal of hydrogen energy, 2022, 47(62): 26238-26264.
[11] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[12] URSUA A, GANDIA L M, SANCHIS P.Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426.
[13] SAKAS G, IBÁÑEZ-RIOJA A, RUUSKANEN V, et al. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process[J]. International journal of hydrogen energy, 2022, 47(7): 4328-4345.
[14] 丁显, 冯涛, 何广利, 等. 风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J]. 储能科学与技术, 2022, 11(10): 3275-3284.
DING X, FENG T, HE G L, et al.Research progress of the influence of wind power and photovoltaic of power fluctuation on water electrolyzer for hydrogen production[J]. Energy storage science and technology, 2022, 11(10): 3275-3284.
[15] KOVAČ A, MARCIUŠ D, BUDIN L.Solar hydrogen production via alkaline water electrolysis[J]. International journal of hydrogen energy, 2019, 44(20): 9841-9848.
[16] ŞAHIN M E.A photovoltaic powered electrolysis converter system with maximum power point tracking control[J]. International journal of hydrogen energy, 2020, 45(16): 9293-9304.
[17] 苏昕, 徐立军, 胡兵. 考虑多变量因素影响的光伏PEM制氢系统建模与分析[J]. 太阳能学报, 2022, 43(6): 521-529.
SU X, XU L J, HU B.Modelling and analysis of photovoltaic PEM hydrogen production system considering multivariable factors[J]. Acta energiae solaris sinica, 2022, 43(6): 521-529.
[18] BRAUNS J, TUREK T.Alkaline water electrolysis powered by renewable energy: a review[J]. Processes, 2020, 8(2): 248.
[19] KOJIMA H, NAGASAWA K, TODOROKI N, et al.Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production[J]. 2023,48(12): 4572-4593.
[20] KIM Y, JUNG S M, KIM K S, et al.Cathodic protection system against a reverse-current after shut-down in zero-gap alkaline water electrolysis[J]. JACS Au, 2022, 2(11): 2491-2500.
[21] AMORES E, RODRÍGUEZ J, CARRERAS C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International journal of hydrogen energy, 2014, 39(25): 13063-13078.
[22] ZENG K, ZHANG D K.Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in energy and combustion science, 2010, 36(3): 307-326.
[23] DIEGUEZ P, URSUA A, SANCHIS P.Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling[J]. International journal of hydrogen energy, 2008, 33(24): 7338-7354.
[24] BARD A J, FAULKNER L R, WHITE H S.Electrochemical methods: fundamentals and applications[M]. Third edition. Hoboken, NJ: John Wiley & Sons, Ltd., 2022.
[25] TRINKE P, HAUG P, BRAUNS J, et al.Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513.
[26] 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582.
LI Y Y, DENG X T, GU J J, et al.Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive engineering, 2022, 44(4): 567-582.
[27] HAUG P, KREITZ B, KOJ M, et al.Process modelling of an alkaline water electrolyzer[J]. International journal of hydrogen energy, 2017, 42(24): 15689-15707.
[28] SCHALENBACH M, LUEKE W, STOLTEN D.Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488.
[29] QI R M, GAO X P, LIN J, et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International journal of hydrogen energy, 2021, 46(73): 35997-36011.
[30] DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al.Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach[J]. International journal of hydrogen energy, 2020, 45(43): 22394-22407.
[31] LI D G, PARK E J, ZHU W L, et al.Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature energy, 2020, 5: 378-385.
[32] HICKNER M A, HERRING A M, COUGHLIN E B.Anion exchange membranes: current status and moving forward[J]. Journal of polymer science B polymer physics, 2013, 51(24): 1727-1735.
[33] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
WANG P C, WAN L, XU Z A, et al.Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC journal, 2021, 72(12): 6161-6175.
[34] 陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展[J]. 工程科学与技术, 2022, 54(1): 106-116.
CHEN B, XIE H P, LIU T, et al.Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality[J]. Advanced engineering sciences, 2022, 54(1): 106-116.
[35] DOTAN H, LANDMAN A, SHEEHAN S W, et al.Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting[J]. Nature energy, 2019, 4: 786-795.
[36] DAVID M, BIANCHI F, OCAMPO-MARTINEZ C, et al.Model-based control design for H2 purity regulation in high-pressure alkaline electrolyzers[J]. Journal of the franklin institute, 2021, 358(8): 4373-4392.
[37] LI Y Y, ZHANG T, DENG X T, et al.Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system[J]. Applied energy, 2022, 328: 120172.
[38] HAUG P, KOJ M, TUREK T.Influence of process conditions on gas purity in alkaline water electrolysis[J]. International journal of hydrogen energy, 2017, 42(15): 9406-9418.

基金

中央高校基本科研业务费专项资金(226-2022-00053); 国家电网有限公司总部科技项目(5108-202218280A-2-442-XG)

PDF(2548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/