多源多负荷直流微电网的稳定裕度分析及控制参数优化设计方法

陈璟华, 黄泽杭, 杨苓, 陈一谦, 刘嘉昕, 叶美婷

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 294-302.

PDF(7732 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7732 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 294-302. DOI: 10.19912/j.0254-0096.tynxb.2023-0453

多源多负荷直流微电网的稳定裕度分析及控制参数优化设计方法

  • 陈璟华, 黄泽杭, 杨苓, 陈一谦, 刘嘉昕, 叶美婷
作者信息 +

STABILITY MARGIN ANALYSIS AND OPTIMAL DESIGN METHOD OF CONTROL PARAMETERS FOR MULTI-SOURCE AND MULTI-LOAD DC MICROGRID

  • Chen Jinghua, Huang Zehang, Yang Ling, Chen Yiqian, Liu Jiaxin, Ye Meiting
Author information +
文章历史 +

摘要

为研究多源多负荷参数间的耦合交互对系统稳定运行的影响,该文建立多源多负荷直流微电网的小信号模型,基于系统振荡模态以及参与因子进行电压稳定性分析。在考虑同类参数耦合的系统稳定裕度分析中,发现全新规律为三台电源供电时,源侧线路长度采用“两长一短”比“两短一长”时系统稳定裕度更大。在考虑异类参数交互的系统稳定裕度分析中,详细解释了多源中下垂系数和虚拟惯性系数的交互作用。基于多控制参数的耦合交互影响,提出控制参数优化设计方法,实现系统稳定裕度最大,并使多源具有提供较大惯性的能力。最后,实验结果验证了上述分析的正确性。

Abstract

In order to study the influence of multi-source and multi-load parameters on the stable operation of the system, a small-signal model of multi-source and multi-load DC microgrid is established in this paper. The voltage stability analysis is carried out based on the oscillation modes and participation factors of the system. The stability margin analysis of the system with the same kind of parameter coupling is carried out. When three power supply, a new pattern is discovered that the system stability margin is larger when the source-line length is “two long and one short” than when the source-line length is “two short and one long”. The interaction between the droop coefficient and the virtual inertia coefficient is explained in detail in the stability margin analysis under heterogeneous parameter. Based on the coupling interaction of multiple control parameters, the optimal design method of control parameters is proposed to achieve the maximum stability margin of the system and have the ability to provide greater inertia. Finally, the experimental results verify the correctness of the above analysis.

关键词

微电网 / DC-DC变换器 / 稳定性 / 小信号模型 / 参数优化设计

Key words

microgrids / DC-DC converters / stability / small-signal model / parameter optimization design

引用本文

导出引用
陈璟华, 黄泽杭, 杨苓, 陈一谦, 刘嘉昕, 叶美婷. 多源多负荷直流微电网的稳定裕度分析及控制参数优化设计方法[J]. 太阳能学报. 2024, 45(7): 294-302 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0453
Chen Jinghua, Huang Zehang, Yang Ling, Chen Yiqian, Liu Jiaxin, Ye Meiting. STABILITY MARGIN ANALYSIS AND OPTIMAL DESIGN METHOD OF CONTROL PARAMETERS FOR MULTI-SOURCE AND MULTI-LOAD DC MICROGRID[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 294-302 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0453
中图分类号: TM619   

参考文献

[1] 付媛, 吴奇, 孙星, 等. 直流微电网中的虚拟储能与分区运行控制技术[J]. 太阳能学报, 2020, 41(5): 319-328.
FU Y, WU Q, SUN X, et al.Virtual energy storage and partition operation control technology in DC microgrid[J]. Acta energiae solaris sinica, 2020, 41(5): 319-328.
[2] PEI W, ZHANG X, DENG W, et al.Review of operational control strategy for DC microgrids with electric-hydrogen hybrid storage systems[J]. CSEE journal of power and energy systems, 2022, 8(2): 329-346.
[3] TABARI M, YAZDANI A.Stability of a DC distribution system for power system integration of plug-in hybrid electric vehicles[J]. IEEE transactions on smart grid, 2014, 5(5): 2564-2573.
[4] 张学, 裴玮, 邓卫, 等. 多源/多负荷直流微电网的能量管理和协调控制方法[J]. 中国电机工程学报, 2014, 34(31): 5553-5562.
ZHANG X, PEI W, DENG W, et al.Energy management and coordinated control method for multi-source/multi-load DC microgrid[J]. Proceedings of the CSEE, 2014, 34(31): 5553-5562.
[5] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122.
ZHAO Z L, YANG P, ZHENG C L, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122.
[6] SU M, LIU Z J, SUN Y, et al.Stability analysis and stabilization methods of DC microgrid with multiple parallel-connected DC-DC converters loaded by CPLs[J]. IEEE transactions on smart grid, 2018, 9(1): 132-142.
[7] 刘辉, 高舜安, 孙大卫, 等. 光伏虚拟同步发电机并网小信号稳定性分析[J]. 太阳能学报, 2021, 42(2): 417-424.
LIU H, GAO S A, SUN D W, et al.Small signal stability analysis of grid-connected photovoltaic virtual synchronous generators[J]. Acta energiae solaris sinica, 2021, 42(2): 417-424.
[8] SUN J.Impedance-based stability criterion for grid-connected inverters[J]. IEEE transactions on power electronics, 2011, 26(11): 3075-3078.
[9] POGAKU N, PRODANOVIC M, GREEN T C.Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE transactions on power electronics, 2007, 22(2): 613-625.
[10] 高阳, 徐国宁, 王生, 等. 平流层飞艇能源系统建模与小信号稳定性分析[J]. 太阳能学报, 2022, 43(8): 50-57.
GAO Y, XU G N, WANG S, et al.Modeling and small signal stability analysis of stratospheric airship energy system[J]. Acta energiae solaris sinica, 2022, 43(8): 50-57.
[11] ANAND S, FERNANDES B G.Reduced-order model and stability analysis of low-voltage DC microgrid[J]. IEEE transactions on industrial electronics, 2013, 60(11): 5040-5049.
[12] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178.
ZHU X R, LI Z, MENG F Q.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178.
[13] 王燕宁, 郭春义, 杨硕, 等. MMC系统稳定裕度随内环电流控制带宽的非单调变化特性及机理分析[J]. 中国电机工程学报, 2022, 42(10): 3538-3548.
WANG Y N, GUO C Y, YANG S, et al.Non-monotonic characteristics of stability margin of MMC system with the change of inner loop current control bandwidth and its mechanism analysis[J]. Proceedings of the CSEE, 2022, 42(10): 3538-3548.
[14] 吴琦, 邓卫, 谭建鑫, 等. 基于下垂控制的多端直流系统稳定性分析[J]. 电工技术学报, 2021, 36(S2): 507-516.
WU Q, DENG W, TAN J X, et al.Stability analysis of multi-terminal DC system based on droop control[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 507-516.
[15] 朱晓荣, 李铮. 多换流器直流微电网稳定性分析[J]. 电网技术, 2021, 45(4): 1400-1410.
ZHU X R, LI Z.Stability analysis of multi converter DC microgrid[J]. Power system technology, 2021, 45(4): 1400-1410.

基金

国家自然科学基金(52107185); 广东省自然科学基金(2023A1515010061)

PDF(7732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/