改进的YOLOv5双影像光伏故障小目标检测

范钧玮, 饶全瑞, 赵薇, 宋美, 刘广臣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 510-516.

PDF(3150 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3150 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 510-516. DOI: 10.19912/j.0254-0096.tynxb.2023-0462

改进的YOLOv5双影像光伏故障小目标检测

  • 范钧玮1, 饶全瑞1, 赵薇2, 宋美2, 刘广臣2
作者信息 +

IMPROVED YOLOv5 DUAL-IMAGE PHOTOVOLTAIC FAULT SMALL TARGET DETECTION

  • Fan Junwei1, Rao Quanrui1, Zhao Wei2, Song Mei2, Liu Guangchen2
Author information +
文章历史 +

摘要

利用无人机对光伏组件进行故障巡检通常从可见光和红外光两种场景分别处理和检测。该文提出基于残差神经网络ResNet50和改进的YOLOv5故障检测方法,实现对两种影像图像高精度自动分类和故障检测。针对红外数据进行色度变换去除太阳反光而保留热斑,针对可见光数据采用锐化的方式凸显异物、裂痕等小目标,使用不同的YOLOv5目标检测算法实现可见光下小型异物故障和红外光下热斑故障的快速检测和定位。

Abstract

The inspection of photovoltaic modules for faults using drones is typically conducted by processing and detecting in both visible light and infrared light scenarios separately. This paper proposes a fault detection method based on the residual neural network ResNet50 and improved YOLOv5, achieving high-precision automatic classification and fault detection of two types of image.For infrared data, chromaticity transformation is used to remove sun reflection and retain hot spots, while for visible light data, sharpening is used to highlight small targets such as foreign objects and cracks. Different YOLOv5 object detection algorithms are used to achieve fast detection and positioning of small foreign object faults under visible light and hot spot faults under infrared light.

关键词

光伏组件 / 深度学习 / 目标检测 / ResNet50 / YOLOv5

Key words

photovoltaic modules / deep learning / objection detection / ResNet50 / YOLOv5

引用本文

导出引用
范钧玮, 饶全瑞, 赵薇, 宋美, 刘广臣. 改进的YOLOv5双影像光伏故障小目标检测[J]. 太阳能学报. 2024, 45(7): 510-516 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0462
Fan Junwei, Rao Quanrui, Zhao Wei, Song Mei, Liu Guangchen. IMPROVED YOLOv5 DUAL-IMAGE PHOTOVOLTAIC FAULT SMALL TARGET DETECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 510-516 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0462
中图分类号: TP391    TP18   

参考文献

[1] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[2] KAPLANI E.Detection of degradation effects in field-aged c-Si solar cells through IR thermography and digital image processing[J]. International journal of photoenergy, 2012, 2012: 396792.
[3] HAUNSCHILD J, REIS I E, GEILKER J, et al.Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging[J]. Physica status solidi (RRL)-Rapid Research Letters, 2011, 5(5/6): 199-201.
[4] CHAKRAPANI S K, PADIYAR M J, BALASUBRAMANIAM K.Crack detection in full size cz-silicon wafers using lamb wave air coupled ultrasonic testing (LAC-UT)[J]. Journal of nondestructive evaluation, 2012, 31(1): 46-55.
[5] HARROU F, TAGHEZOUIT B, SUN Y.Improved KNN-based monitoring schemes for detecting faults in PV systems[J]. IEEE journal of photovoltaics, 2019, 9(3): 811-821.
[6] DHIMISH M, HOLMES V, MEHRDADI B, et al.Simultaneous fault detection algorithm for grid-connected photovoltaic plants[J]. IET renewable power generation, 2017, 11(12): 1565-1575.
[7] EL-DABAH M A, EL-SEHIEMY R A, HASANIEN H M, et al. Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm[J]. Energy, 2023, 262: 125522.
[8] DHIMISH M, HOLMES V, MEHRDADI B, et al.Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system[J]. Energy, 2017, 140: 276-290.
[9] CHOUDER A, SILVESTRE S.Automatic supervision and fault detection of PV systems based on power losses analysis[J]. Energy conversion and management, 2010, 51(10): 1929-1937.
[10] DAVARIFAR M, RABHI A, EL-HAJJAJI A, et al.Real-time model base fault diagnosis of PV panels using statistical signal processing[C]//2013 International Conference on Renewable Energy Research and Applications (ICRERA). Madrid, Spain, 2013: 599-604.
[11] 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470.
GAO W, HUANG J M.Intelligent fault diagnosis method of photovoltaic module via SSELM[J]. Acta energiae solaris sinica, 2021, 42(12): 465-470.
[12] 郭宝柱. 光伏阵列热斑的红外图像处理的研究[D]. 天津: 天津理工大学, 2016.
GUO B Z.Research on infrared image processing of photovoltaic array of hot spot[D]. Tianjin: Tianjin University of Technology, 2016.
[13] TSANAKAS J A, CHRYSOSTOMOU D, BOTSARIS P N, et al.Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements[J]. International journal of sustainable energy, 2015, 34(6): 351-372.
[14] TSANAKAS J A, BOTSARIS P N.On the detection of hot spots in operating photovoltaic arrays through thermal image analysis and a simulation model[J]. Materials evaluation, 2013, 71(4): 457-465.
[15] 赖菲, 陈亚鹏, 单正涛, 等. 深度学习算法在光伏电站无人机智能运维中应用[J]. 热力发电, 2019, 48(9): 139-144.
LAI F, CHEN Y P, SHAN Z T, et al.Application of deep learning algorithm in intelligent operation and maintenance of UAVs in photovoltaic power plants[J]. Thermal power generation, 2019, 48(9): 139-144.
[16] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[17] 谢祥颖, 刘虎, 王栋, 等. 基于深度残差网络的光伏故障诊断模型研究[J]. 计算机工程与科学, 2021, 43(12): 2223-2230.
XIE X Y, LIU H, WANG D, et al.A fault diagnosis model of distributed photovoltaic power stations based on deep residual network[J]. Computer engineering & science, 2021, 43(12): 2223-2230.
[18] 宋谱怡, 陈红, 苟浩波. 改进YOLOv5s的无人机目标检测算法[J]. 计算机工程与应用, 2023, 59(1): 108-116.
SONG P Y, CHEN H, GOU H B.Improving UAV object detection algorithm for YOLOv5s[J]. Computer engineering and applications, 2023, 59(1): 108-116.
[19] 孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLO v5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208.
SUN J B, WANG L J, MA J H, et al.Photovoltaic module fault detection based on improved YOLOv5s algorithm[J]. Infrared technology, 2023, 45(2): 202-208.
[20] 陈志琳, 齐华, 王相超. 基于改进YOLOv5算法的口罩佩戴检测研究[J]. 电子设计工程, 2022, 30(22): 67-72.
CHEN Z L, QI H, WANG X C.Research on mask wearing detection based on improved YOLOv5 algorithm[J]. Electronic design engineering, 2022, 30(22): 67-72.
[21] 王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81.
WANG Y X, XIAO X L, WANG P F, et al.Improved YOLOv5s small target smoke and fire detection algorithm[J]. Computer engineering and applications, 2023, 59(1): 72-81.

基金

国家级大学生创新创业训练项目(202310451208); 山东省大学生创新训练项目(S202210451041); 山东省高等学校教学研究与改革面上项目(M2018X066); 鲁东大学“专创融合”课程建设重点项目(2021Z08)

PDF(3150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/