基于多光谱图像融合的区域光伏发电容量预测

马晓磊, 张彦军, 汪凯威, 孙林华, 李永光

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 267-271.

PDF(1865 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1865 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 267-271. DOI: 10.19912/j.0254-0096.tynxb.2023-0464

基于多光谱图像融合的区域光伏发电容量预测

  • 马晓磊1, 张彦军1,2, 汪凯威1, 孙林华3, 李永光1
作者信息 +

REGIONAL PHOTOVOLTAIC POWER GENERATION CAPACITY PREDICTION BASED ON MULTISPECTRAL IMAGE FUSION

  • Ma Xiaolei1, Zhang Yanjun1,2, Wang Kaiwei1, Sun Linhua3, Li Yongguang1
Author information +
文章历史 +

摘要

为了提高电力系统运行的安全性,提出一种基于多光谱图像融合的区域光伏发电容量预测方法。确定区域光伏发电管辖范围,采集多光谱卫星遥感图像,对图像进行IHS变换和Curvelet变换,通过多光谱图像融合技术融合标准差,分析光伏电站时空特征,集合历史数据,动态预测区域光伏发电容量。实验结果表明:该方法的预测均方误差为0.526、互信息以及结构相似性均在0.9以上,可以清晰呈现光伏电站时空多光谱图像,区域光伏发电容量真实值与预测值较为拟合,可以准确预测区域光伏发电容量的变化情况。

Abstract

In order to improve the safety of power system operation, a region photovoltaic (PV) power generation capacity prediction method based on multispectral image fusion is proposed. The method defines the jurisdiction of regional PV power generation, acquires multispectral satellite remote sensing images, applies IHS transformation and Curvelet transform to the images, and fuses the standard deviation of multispectral images through image fusion technology. By analyzing the spatio-temporal characteristics of the PV power station and combining historical data, the method dynamically predicts the regional PV power generation capacity. Experimental results show that the mean square error of the method is 0.526, and the mutual information and structural similarity are both above 0.9. The method can clearly present the spatio-temporal multispectral images of the PV power station, and the real and predicted values of regional PV power generation capacity are well fitted, which can accurately predict the changes in regional PV power generation capacity.

关键词

多光谱 / 图像融合 / Curvelet变换 / 区域光伏发电 / 容量预测

Key words

multispectral / image fusion / Curvelet transform / regional photovoltaic power generation / capacity forecast

引用本文

导出引用
马晓磊, 张彦军, 汪凯威, 孙林华, 李永光. 基于多光谱图像融合的区域光伏发电容量预测[J]. 太阳能学报. 2024, 45(11): 267-271 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0464
Ma Xiaolei, Zhang Yanjun, Wang Kaiwei, Sun Linhua, Li Yongguang. REGIONAL PHOTOVOLTAIC POWER GENERATION CAPACITY PREDICTION BASED ON MULTISPECTRAL IMAGE FUSION[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 267-271 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0464
中图分类号: TM615   

参考文献

[1] 屈星, 李欣然, 盛义发, 等. 面向广义负荷的光伏发电系统等效建模研究[J]. 电网技术, 2020, 44(6): 2143-2150.
QU X, LI X R, SHENG Y F, et al.Research on equivalent modeling of PV generation system for generalized load[J]. Power system technology, 2020, 44(6): 2143-2150.
[2] 邓文丽, 戴朝华, 张涵博, 等. 复杂电气化铁路牵引用光伏发电系统综合优化控制方法研究[J]. 中国电机工程学报, 2020, 40(18): 5849-5864, 14.
DENG W L, DAI C H, ZHANG H B, et al.Research on comprehensive optimization control method for traction photovoltaic generation system of complex electrified railway[J]. Proceedings of the CSEE, 2020, 40(18): 5849-5864, 14.
[3] 彭曙蓉, 郑国栋, 黄士峻, 等. 基于XGBoost算法融合多特征短期光伏发电量预测[J]. 电测与仪表, 2020, 57(24): 76-83.
PENG S R, ZHENG G D, HUANG S J, et al.Multiple-feature short-term photovoltaic generation forecasting based on XGBoost algorithm[J]. Electrical measurement & instrumentation, 2020, 57(24): 76-83.
[4] 方鹏, 高亚栋, 潘国兵, 等. 基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J]. 可再生能源, 2022, 40(1): 48-54.
FANG P, GAO Y D, PAN G B, et al.Research on forecasting method of mid-and long-term photovoltaic power generation based on LSTM neural network[J]. Renewable energy resources, 2022, 40(1): 48-54.
[5] 王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-RF的光伏微电网日发电功率组合预测方法研究[J]. 太阳能学报, 2020, 41(3): 177-183.
WANG X Y, LUO D, SUN Y L, et al.Combined forecasting method of daily photovoltaic power generation in microgrid based on ABC-SVM and PSO-RF models[J]. Acta energiae solaris sinica, 2020, 41(3): 177-183.
[6] OMER B A, SERAJ M S, MOHAMED D.Detecting and distinguishing ophiolite rocks via multispectral remote sensing in Bi’r umq, southeast Al madinah Al munawarrah, Saudi Arabia[J]. International journal of geosciences, 2021, 12(7): 635-652.
[7] 姜文斌, 孙学宏, 刘丽萍. 基于离散小波变换和梯度锐化的遥感图像融合算法[J]. 电光与控制, 2020, 27(5): 47-51.
JIANG W B, SUN X H, LIU L P.A remote sensing image fusion algorithm based on DWT and gradient sharpening[J]. Electronics optics & control, 2020, 27(5): 47-51.
[8] 侯卫民, 赵拓, 苏佳, 等. 基于协同表示的高光谱和多光谱图像融合算法[J]. 电子科技大学学报, 2020, 49(4): 569-574.
HOU W M, ZHAO T, SU J, et al.Hyperspectral and multispectral image fusion algorithm based on collaborative representation[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(4): 569-574.
[9] 黄峰, 黄伟蓝, 吴衔誉. 空间和光谱信息保持的多光谱图像融合算法[J]. 福州大学学报(自然科学版), 2021, 49(3): 285-294.
HUANG F, HUANG W L, WU X Y.Pan-sharpening algorithm based on spatial and spectral information preservation[J]. Journal of Fuzhou University (natural science edition), 2021, 49(3): 285-294.
[10] 李建飞, 陈春晓, 王亮. 基于双树复小波变换和频域U-Net的多光谱图像融合算法[J]. 生物医学工程研究, 2020, 39(2): 145-150.
LI J F, CHEN C X, WANG L.Fusion algorithm of multi-spectral images based on dual-tree complex wavelet transform and frequency-domain U-Net[J]. Journal of biomedical engineering research, 2020, 39(2): 145-150.
[11] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[12] LI G H, LI J J, FAN H.Edge-guided multispectral image fusion algorithm[J]. Journal of applied remote sensing, 2020, 14(4): 046515.
[13] 时庆涛, 朱兴宇, 于超. 多光谱图像纹理特征数据挖掘方法仿真[J]. 计算机仿真, 2020, 37(2): 247-250.
SHI Q T, ZHU X Y, YU C.Simulation of multi-spectral image texture feature data intelligent mining method[J]. Computer simulation, 2020, 37(2): 247-250.
[14] 戎念慈, 黄梅珍. 可见-近红外多光谱和多种算法模型融合的血迹年龄预测[J]. 光谱学与光谱分析, 2020, 40(1): 168.
RONG N C, HUANG M Z.Age estimation of bloodstains based on visible-near infrared multi-spectrum combined ensembling model[J]. Spectroscopy and spectral analysis, 2020, 40(1): 168.
[15] 蔚道权, 王慧琴, 王可, 等. 基于空谱联合特征的壁画稀疏多光谱图像颜料分类方法[J]. 光子学报, 2022, 51(4): 0430002.
WEI D Q, WANG H Q, WANG K, et al.Pigment classification method of mural sparse multi-spectral image based on space spectrum joint feature[J]. Acta photonica sinica, 2022, 51(4): 0430002.
[16] 李磊, 温大新, 王宇. 基于对冲火焰的碳烟辐射光谱测量及误差分析[J]. 江苏大学学报(自然科学版), 2022, 43(4): 488-496.
LI L, WEN D X, WANG Y.Measurement of soot spectral emission and error analysis based on counterflow flame[J]. Journal of Jiangsu University (natural science edition), 2022, 43(4): 488-496.
[17] 王清亮, 杨博, 应欣峰, 等. 非晴空条件下光伏发电短期功率预测方法[J]. 太阳能学报, 2022, 43(3): 188-196.
WANG Q L, YANG B, YING X F, et al.Short-term photovoltaic power forecasting method under non-clear sky condition[J]. Acta energiae solaris sinica, 2022, 43(3): 188-196.

PDF(1865 KB)

Accesses

Citation

Detail

段落导航
相关文章

/