聚光太阳能SCO2热发电系统性能分析与优化设计

范刚, 宋健, 宫啸宇, 傅子隽, 张嘉耕, 戴义平

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 590-598.

PDF(2134 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2134 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 590-598. DOI: 10.19912/j.0254-0096.tynxb.2023-0468

聚光太阳能SCO2热发电系统性能分析与优化设计

  • 范刚1,2, 宋健2, 宫啸宇1, 傅子隽1, 张嘉耕1, 戴义平1
作者信息 +

PERFORMANCE ANALYSIS AND OPTIMIZATION DESIGN OF SUPERCRITICAL CO2 POWER CYCLES FOR CONCENTRATING SOLAR THERMAL POWER

  • Fan Gang1,2, Song Jian2, Gong Xiaoyu1, Fu Zijun1, Zhang Jiageng1, Dai Yiping1
Author information +
文章历史 +

摘要

针对聚光太阳能超临界二氧化碳(SCO2)热发电系统展开研究,构建系统热力学性能分析模型,分析集热侧、动力循环侧的性能,揭示系统集热-蓄热-热功转化之间的相互匹配特性规律,综合分析比较不同集热器、储热工质、动力循环组成的聚光太阳能SCO2热发电系统的全年发电量和年均光-电转化效率,并对系统参数进行优化设计。结果表明:与线性菲涅尔式、槽形抛物面式聚光方式相比,塔式聚光方式的集热量受季节影响小,单位面积上全年集热量最高,全年集热效率约43%;增大高温储罐工质温度或降低低温储热罐工质温度能增大系统年发电量与年均光-电转化效率;采用塔式集热、NaCl-KCl-MgCl2高温熔融盐、再压缩式超临界CO2循环的聚光太阳能热发电系统具有最佳热力学性能。

Abstract

This research focuses on performance analysis and design optimization of CSP plants integrated with SCO2 systems. The thermodynamic models are established to analyze the performance of the collector subsystem and power cycle subsystem. The interaction characteristics among the heat collection, thermal energy storage, and energy conversion process are demonstrated. The performance comparison of different CSP systems are conducted in this study, of which three collectors, two heat storage mediums, and two SCO2 cycles are considered. Finally, the optimization are conducted for the proposed systems. The results show that compared with linear Fresnel and parabolic trough collectors, solar power towers (SPTs) generally exhibit a more consistent optical performance in summer and winter and the annual heat-collecting efficiency reaches 43% by SPTs. Increasing the hot tank temperature or decreasing the cold tank temperature contribute to higher annual power generation. The optimization result indicates that the SPT plant integrated with recompression SCO2 cycle and NaCl-KCl-MgCl2 molten salt provides the best thermodynamic performance.

关键词

太阳能热发电 / 超临界CO2循环 / 热力学性能 / 优化设计

Key words

solar thermal power / supercritical CO2 cycle / thermodynamic performance / optimization design

引用本文

导出引用
范刚, 宋健, 宫啸宇, 傅子隽, 张嘉耕, 戴义平. 聚光太阳能SCO2热发电系统性能分析与优化设计[J]. 太阳能学报. 2024, 45(7): 590-598 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0468
Fan Gang, Song Jian, Gong Xiaoyu, Fu Zijun, Zhang Jiageng, Dai Yiping. PERFORMANCE ANALYSIS AND OPTIMIZATION DESIGN OF SUPERCRITICAL CO2 POWER CYCLES FOR CONCENTRATING SOLAR THERMAL POWER[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 590-598 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0468
中图分类号: TK513.5   

参考文献

[1] International Energy Agency. Concentrating solar power generation in the Sustainable Development Scenario, 2000-2030[EB/OL]. [2021-04-02], https://www.iea.org/fuels-and-technologies/solar.
[2] HE Y L, QIU Y, WANG K, et al.Perspective of concentrating solar power[J]. Energy, 2020, 198: 117373.
[3] 杨薛明, 陶嘉伟, 孟凡星, 等. Li2CO3/Na2CO3/K2CO3及其混合熔融盐储热材料热物性分子动力学研究[J]. 太阳能学报, 2023, 44(5): 48-58.
YANG X M, TAO J W, MENG F X, et al.Molecular dynamics study on thermophysical properties of Li2CO3/Na2CO3/K2CO3 and their mixed molten salt for heat storage[J]. Acta energiae solaris sinica, 2023, 44(5): 48-58.
[4] SARVGHAD M, ONG T C, BELL S, et al.On the compatibility of liquid sodium as heat transfer fluid for advanced concentrated solar thermal energy systems[J]. Solar energy materials and solar cells, 2022, 246: 111897.
[5] CALDERÓN A, PALACIOS A, BARRENECHE C, et al. High temperature systems using solid particles as TES and HTF material: a review[J]. Applied energy, 2018, 213: 100-111.
[6] PETROLLESE M, ARENA S, CASCETTA M, et al.Techno-economic comparison of different thermal energy storage technologies for medium-scale CSP plants[C]//Second International Conference On Material Science, Smart Structures And Applications: ICMSS-2019, AIP Conference Proceedings. Erode, India, 2019.
[7] SONG J, WANG Y X, WANG K, et al.Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: thermoeconomic assessment of various configurations[J]. Renewable energy, 2021, 174: 1020-1035.
[8] 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130.
YANG J Z, YANG Z, DUAN Y Y.Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta energiae solaris sinica, 2022, 43(9): 125-130.
[9] WANG K, LI M J, GUO J Q, et al.A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J]. Applied energy, 2018, 212(Feb.15): 109-121.
[10] 吴毅, 王佳莹, 王明坤, 等. 基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J]. 西安交通大学学报, 2016, 50(5): 108-113.
WU Y, WANG J Y, WANG M K, et al.A towered solar thermal power plant based on supercritical CO2 brayton cycle[J]. Journal of Xi'an Jiaotong University, 2016, 50(5): 108-113.
[11] National Renewable Energy Laboratory. Solar advisor model (SAM)[R].[2022-07-14], https://sam.nrel.gov/download.html.
[12] WAGNER M.Results and comparison from the SAM linear Fresnel technology performance model[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2012.
[13] DUDLEY V, KOLB G, MAHONEY A, MANCINI T, MATTHEWS C, SLOAN M, KEARNEY D.Test Results: SEGS LS-2 Solar Collector[R]. Sandia National Laboratory, Albuquerque, US, 1994.
[14] 杜春旭, 吴玉庭, 王普, 等. 塔式太阳能发电系统镜场面积估算方法[C]//中国工程热物理学会, 武汉, 中国, 2011.
DU C X, WU Y T, WANG P, et al.Estimation of Heliostat Field Area for the Solar Power Tower Plant[C]//Chinese Society of Engineering Thermophysics. Wuhan, China, 2011.
[15] 王坤. 超临界二氧化碳太阳能热发电系统的高效集成及其聚光传热过程的优化调控研究[D]. 西安: 西安交通大学, 2018.
WANG K.Study on the integration of S-CO2 Brayton cycles in a solar power tower and the optimization of its concentrating and heat transfer processes[D]. Xi'an: Xi'an Jiaotong University, 2018.
[16] SIEBERS D, KRAABEL J. Estimating convective energy losses from solar central receivers[R]. Livermore (CA): Sandia National Laboratory, 1984. Report No.: SAND-84-8717.
[17] EnergyPlus. Weather data[EB/OL].[2022-09-02]. https://energyplus.net/weather.
[18] SARKAR J.Second law analysis of supercritical CO2 recompression Brayton cycle[J]. Energy, 2009, 34(9): 1172-1178.
[19] DU Y D, YANG C, HU C X, et al.Thermoeconomic analysis and inter-stage pressure ratio optimization of nuclear power supercritical CO2 multi-stage recompression[J]. International journal of energy research, 2021, 45(2): 2367-2382.
[20] LINARES J I, MONTES M J, CANTIZANO A, et al.A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants[J]. Applied energy, 2020, 263: 114644.
[21] MOHAMMADI K, MCGOWAN J G.Thermoeconomic analysis of multi-stage recuperative Brayton cycles: part II-Waste energy recovery using CO2 and organic Rankine power cycles[J]. Energy conversion and management, 2019, 185: 920-934.
[22] MENG F X, WANG E H, ZHANG B, et al.Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source[J]. Energy conversion and management, 2019, 195: 1295-1308.
[23] WANG K, HE Y L, ZHU H H.Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied energy, 2017, 195: 819-836.
[24] WANG X R, DAI Y P.Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study[J]. Applied energy, 2016, 170: 193-207.
[25] BAHAMONDE NORIEGA J.Design method for S-CO2 gas turbine power plants: Integration of thermodynamic analysis and components design for advanced applications[D]. Delft: Delft University of Technology, 2012.
[26] RABL A.Active solar collectors and their applications[M]. New York: Oxford University Press, 1985.
[27] SUN J, ZHANG Z, WANG L, et al.Comprehensive review of line-focus concentrating solar thermal technologies: parabolic trough collector (PTC) vs linear Fresnel reflector (LFR)[J]. Journal of thermal science, 2020, 29(5): 1097-1124.
[28] PARRADO C, MARZO A, FUENTEALBA E, et al.2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants[J]. Renewable and sustainable energy reviews, 2016, 57: 505-514.
[29] MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al.Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy conversion and management, 2018, 167: 156-164.

基金

国家自然科学基金(51976145)

PDF(2134 KB)

Accesses

Citation

Detail

段落导航
相关文章

/