基于哨兵函数和S变换的风力机叶片材料损伤特性研究

廖力达, 舒王咏, 张芝铭, 刘亮, 冯飞, 陈为强

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 656-663.

PDF(5615 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5615 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 656-663. DOI: 10.19912/j.0254-0096.tynxb.2023-0472

基于哨兵函数和S变换的风力机叶片材料损伤特性研究

  • 廖力达1, 舒王咏1, 张芝铭1, 刘亮1, 冯飞2, 陈为强2
作者信息 +

STUDY ON DAMAGE CHARACTERISTICS OF WIND TURBINE BLADE MATERIALS BASED ON SENTINEL FUNCTION AND S-TRANSFORM

  • Liao Lida1, Shu Wangyong1, Zhang Zhiming1, Liu Liang1, Feng Fei2, Chen Weiqiang2
Author information +
文章历史 +

摘要

利用声发射检测技术研究玻璃纤维增强环氧树脂复合材料的损伤特性,在此过程中,采用哨兵函数来表征该材料的损伤程度,并通过S变换和模糊C均值(FCM)聚类来分析声发射信号,从而获得材料的损伤特征。三点弯曲实验结束后对试件断口进行扫描电子显微镜(SEM)拍照来验证,可得:通过对SEM照片的分析得到基体开裂、纤维脱粘、分层破坏、纤维断裂4种损伤模式;对整个声发射事件进行哨兵函数分析,观察到试件在弯曲过程中哨兵函数曲线呈明显下降趋势;对依据哨兵函数划分的不同阶段的信号进行VMD降噪处理,然后采用S变换进行时频分析得到不同损伤的特征频率,最后采用FCM聚类进行验证。结果表明:哨兵函数值的突变可作为材料断裂的预警信号,材料损伤类型的识别可依据S变换的频率分布结果进行确定。

Abstract

This paper studies the damage characteristics of fiberglass reinforced epory resin composite using acoustic emission detection technology. In this process, the sentinel function is used to characterize the degree of damage to the material, and the acoustic emission signals are analyzed through the S-transform and fuzzy C-means (FCM) clustering to obtain the damage characteristics of the material. After the three-point bending experiment, SEM (Scanning Electron Microscope) photos of the fracture surface of the test piece are taken for verification, and the following conclusions are obtained: Analysis of SEM photos reveals four damage modes: matrix cracking, fiber debonding, delamination damage, and fiber breakage; Sentinel function analysis of the entire acoustic emission event observed that the sentinel function curve showed a clear downward trend during the bending process of the test piece; The signals at different stages divided according to the sentinel function are denoised by VMD, and then the S transform is used for time-frequency analysis to obtain the characteristic frequencies of different damages, and finally verified by the FCM clustering. The results show that the sudden change of the sentinel function value can serve as an early warning signal for material fracture, and the identification of the type of material damage can be determined according to the frequency distribution results of the S transform.

关键词

风力机叶片 / 复合材料 / 声发射 / 损伤特性 / 哨兵函数 / S变换

Key words

wind turbine blades / composite materials / acoustic emissions / damage characteristics / sentry function / S transform

引用本文

导出引用
廖力达, 舒王咏, 张芝铭, 刘亮, 冯飞, 陈为强. 基于哨兵函数和S变换的风力机叶片材料损伤特性研究[J]. 太阳能学报. 2024, 45(7): 656-663 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0472
Liao Lida, Shu Wangyong, Zhang Zhiming, Liu Liang, Feng Fei, Chen Weiqiang. STUDY ON DAMAGE CHARACTERISTICS OF WIND TURBINE BLADE MATERIALS BASED ON SENTINEL FUNCTION AND S-TRANSFORM[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 656-663 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0472
中图分类号: V258+.3   

参考文献

[1] GONZÁLEZ-GONZÁLEZ A, JIMENEZ CORTADI A, GALAR D, et al. Condition monitoring of wind turbine pitch controller: a maintenance approach[J]. Measurement, 2018, 123: 80-93.
[2] GARCÍA MÁRQUEZ F P, PECO CHACÓN A M. A review of non-destructive testing on wind turbines blades[J]. Renewable energy, 2020, 161: 998-1010.
[3] GHOLIZADEH S, LEMAN Z, BAHARUDIN B T H T. State-of-the-art ensemble learning and unsupervised learning in fatigue crack recognition of glass fiber reinforced polyester composite(GFRP) using acoustic emission[J]. Ultrasonics, 2023, 132: 106998.
[4] 俞方艾, 周勃, 张雪岩, 等. 含分层缺陷的叶片复合材料层合板损伤识别方法的研究[J]. 机械强度, 2022, 44(6): 1327-1334.
YU F A, ZHOU B, ZHANG X Y, et al.A study on fatigue damage identification method of a blade composite laminate with delamination defects[J]. Journal of mechanical strength, 2022, 44(6): 1327-1334.
[5] XU D, LIU P F, CHEN Z P, et al.Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning[J]. Composite structures, 2020, 236: 111840.
[6] 黄喜鹏, 王波, 常杰. 基于声发射技术的陶瓷基复合材料声速特性[J]. 复合材料学报, 2021, 38(5): 1517-1525.
HUANG X P, WANG B, CHANG J.Acoustic emission-based sound velocity characteristics of ceramic matrix composites[J]. Acta materiae compositae sinica, 2021, 38(5): 1517-1525.
[7] ZHAO W Z, ZHOU W.Cluster analysis of acoustic emission signals and tensile properties of carbon/glass fiber-reinforced hybrid composites[J]. Structural health monitoring, 2019, 18(5/6): 1686-1697.
[8] WANG X H, XIE H, TONG Y G, et al.Three-point bending properties of 3D_C/C_TiC_Cu composites based on acoustic emission technology[J]. Mechanical systems and signal processing, 2023, 184: 109693.
[9] PANEK M, BLAZEWICZ S, KONSZTOWICZ K J.Correlation of acoustic emission with fractography in bending of glass-epoxy composites[J]. Journal of nondestructive evaluation, 2020, 39(3): 63.
[10] HOSEINLAGHAB S, FARAHANI M, SAFARABADI M, et al.Tension-after-impact analysis and damage mechanism evaluation in laminated composites using AE monitoring[J]. Mechanical systems and signal processing, 2023, 186: 109844.
[11] 邢广怀, 商雅静, 邢浩, 等. 三维编织复合材料拉伸损伤声发射监测与显微CT表征[J]. 工程塑料应用, 2021, 49(5): 108-113.
XING G H, SHANG Y J, XING H, et al.Acoustic emission monitoring and micro-CT characterization of tensile damage for three dimensional braided composites[J]. Engineering plastics application, 2021, 49(5): 108-113.
[12] 张亚楠, 周勃, 俞方艾, 等. 基于聚类分析的含原生缺陷风力机叶片拉伸缺陷演化研究[J]. 太阳能学报, 2021, 42(4): 396-402.
ZHANG Y N, ZHOU B, YU F A, et al.Study on evolution of tensile defects in wind turbine blades with primary defects based on cluster analysis[J]. Acta energiae solaris sinica, 2021, 42(4): 396-402.
[13] 张亚楠, 周勃, 俞方艾, 等. 含缺陷风电叶片复合材料的失稳状态识别和预测[J]. 太阳能学报, 2021, 42(9): 318-325.
ZHANG Y N, ZHOU B, YU F A, et al.Identification and prediction of instability status of composites with defective wind power blades[J]. Acta energiae solaris sinica, 2021, 42(9): 318-325.
[14] CHELLIAH S K, PARAMESWARAN P, RAMASAMY S, et al.Optimization of acoustic emission parameters to discriminate failure modes in glass-epoxy composite laminates using pattern recognition[J]. Structural health monitoring, 2019, 18(4): 1253-1267.
[15] AZADI M, SAYAR H, GHASEMI-GHALEBAHMAN A, et al.Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach[J]. Composites part B: engineering, 2019, 158: 448-458.
[16] BEHESHTIZADEH N, MOSTAFAPOUR A, DAVOODI S.Three point bending test of glass/epoxy composite health monitoring by acoustic emission[J]. Alexandria engineering journal, 2019, 58(2): 567-578.
[17] JUNG D, LEE B S, YU W R, et al.Effect of propagation distance on acoustic emission of carbon fiber/epoxy composites[J]. Structural health monitoring, 2021, 20(6): 3342-3353.
[18] SAEEDIFAR M, NAJAFABADI M A, ZAROUCHAS D, et al.Barely visible impact damage assessment in laminated composites using acoustic emission[J]. Composites part B: engineering, 2018, 152: 180-192.
[19] STOCKWELL R G, MANSINHA L, LOWE R P.Localization of the complex spectrum: the S transform[J]. IEEE transactions on signal processing, 1996, 44(4): 998-1001.
[20] BAKHTIARY DAVIJANI A A, HAJIKHANI M, AHMADI M. Acoustic emission based on sentry function to monitor the initiation of delamination in composite materials[J]. Materials and design, 2011, 32(5): 3059-3065.
[21] BARILE C, CASAVOLA C, PAPPALETTERA G, et al.Damage characterization in composite materials using acoustic emission signal-based and parameter-based data[J]. Composites part B: engineering, 2019, 178: 107469.
[22] VERMA L, ANDREW J J, SIVAKUMAR S M, et al.Evaluation of quasi-static indentation response of superelastic shape memory alloy embedded GFRP laminates using AE monitoring[J]. Polymer testing, 2021, 93: 106942.
[23] LOGANATHAN T G, KALIDAS V K, BARI K, et al.Structural integrity evaluation of cyclic loading glass fibre reinforced polymer composite by acoustic emission and heat transfer[J]. Journal of composite materials, 2022, 56(24): 3715-3727.

基金

湖南省自然科学基金(2021JJ30717)

PDF(5615 KB)

Accesses

Citation

Detail

段落导航
相关文章

/