针对风资源精细化评估需求,提出采用实际测风数据修正k-l湍流模型的关键参数,以提高数值仿真对大尺度复杂地形流动的准确性和适用性。在此过程中,首先介绍k-l模型的求解过程并开展网格分辨率研究;其次利用实际测风数据修正模型参数并使用典型案例进行验证;最后以中国华南地区某实际风电场为对象,将其与k-ε模型进行对比分析以验证其有效性和优越性。结果表明,相比于k-ε模型,原始k-l模型由于高估了尾流影响,导致预测误差偏大;而修正参数后的k-l模型能有效提升精度,风加速因子和发电量等效小时数的平均相对误差分别降低5.1%和7%。因此,在k-l模型的实际应用过程中,需利用实际测风数据修正参数,或将参数B1的量级调整为102。
Abstract
In view of the demand for high accuracy of wind resource assessment, key parameters of the k-l turbulence model are modified using measured data. By adopting this methodology, the accuracy and practicality of numerical simulation for large-scale flow over complex terrain can be improved dramatically. First, the k-l turbulence model is reviewed, and appropriate grid resolution is determined. Then, the model parameters are modified based on measured data and verified using a benchmark case. Finally, a wind farm in South China is evaluated using different models to verify the effectiveness and superiority of the proposed method. The results indicate that wake effect is overestimated when the original parameters of k-l turbulence model are used, which leads to increased error. The accuracy of k-l turbulence model is improved using the parameters determined by the proposed method. The mean relative error of wind speed-up factors and AEP (Annual Energy Production) are reduced by 5.1% and 7%, respectively. In summary, the parameters of the k-l turbulence model should be modified using measured data or the order of parameter B1 should be modified to 102.
关键词
风力发电 /
湍流模型 /
数值方法 /
复杂地形 /
测风数据
Key words
wind power /
turbulence model /
numerical method /
complex terrain /
measured data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BURTON T, SHARPE D, JENKINS N, et al.Wind energy handbook[M]. New York: John Wiley & Sons Ltd., 2001
[2] 贺德馨. 风工程与工业空气动力学[M]. 北京: 国防工业出版社, 2006: 221-225.
HE D X.Wind engineering and industrial aerodynamics[M]. Beijing: National Defense Industry Press, 2006: 221-225.
[3] DHUNNY A Z, LOLLCHUND M R, RUGHOOPUTH S D D V. Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics(CFD)[J]. Renewable energy, 2017, 101: 1-9.
[4] HAN X X, LIU D Y, XU C, et al.Similarity functions and a new k-ε closure for predicting stratified atmospheric surface layer flows in complex terrain[J]. Renewable energy, 2020, 150: 907-917.
[5] 余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269.
YU W L, KE S T.Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of WRF and CFD[J]. Acta energiae solaris sinica, 2020, 41(12): 260-269.
[6] 赵子涵, 李朝, 肖仪清, 等. 基于NWP/CFD嵌套的复杂地形风场模拟研究[J]. 太阳能学报, 2021, 42(2): 205-210.
ZHAO Z H, LI C, XIAO Y Q, et al.Wind field simulation over complex terrain by coupling NWP/CFD approach[J]. Acta energiae solaris sinica, 2021, 42(2): 205-210.
[7] 侯亚丽, 吕爱静, 邸建琛, 等. 建筑密度对建筑物群内风能利用的影响[J]. 太阳能学报, 2022, 43(5): 336-342.
HOU Y L, LYU A J, DI J C, et al.Influence of building density on wind energy utilization in buildings[J]. Acta energiae solaris sinica, 2022, 43(5): 336-342.
[8] BELJAARS A C M, WALMSLEY J L, TAYLOR P A. A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography[J]. Boundary-layer meteorology, 1987, 38(3): 273-303.
[9] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46/47: 145-153.
[10] 刘文, 王晓东, 闫姝, 等. 基于校准k-ε模型的复杂地形流动数值模拟[J]. 工程热物理学报, 2021, 42(2): 377-385.
LIU W, WANG X D, YAN S, et al.Numerical simulations of flow within complex terrain based on calibrated k-ε model[J]. Journal of engineering thermophysics, 2021, 42(2): 377-385.
[11] MELLOR G L, YAMADA T.Development of a turbulence closure model for geophysical flow problems[J]. Review of geophysics and space physics, 1982, 20:831-875.
[12] YAMADA T.Simulations of nocturnal drainage flows by a q2l turbulence model[J]. Journal of the atmospheric sciences, 1983, 40:91-106.
[13] ARRITT R W.The effect of water surface temperature on lake breezes and thermal internal boundary layers[J]. Boundary-layer meteorology, 1987, 40(1): 101-125.
[14] MANNING J, HANCOCK P, WHITING R.A study of the ability of Meteodyn WT to replicate measurements around steep hills using wind tunnel data from the ‘RUSHIL' experiment[J]. Wind engineering, 2010, 34(5): 477-499.
[15] LAUFER J.The structure of turbulence in fully developed pipe flow [R]. NACA-TR-1174, 1954.
[16] LAUFER J.Investigation of turbulent flow in a two-dimensional channel[R]. NACA-TR-1053, 1951.
[17] KLEBANOFF P S.Characteristics of turbulence in a boundary layer with zero pressure gradient [R]. NACA-TN-3178, 1954.
[18] ROSE W G.Results of an attempt to generate a homogeneous turbulent shear flow[J]. Journal of fluid mechanics, 1966, 25: 97-120.
[19] PATANKAR S V, SPALDING D B.A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International journal of heat and mass transfer, 1972, 15(10): 1787-1806.
[20] BLACKADAR A K.The vertical distribution of wind and turbulent exchange in a neutral atmosphere[J]. Journal of geophysical research, 1962, 67(8): 3095-3102.
[21] LOUIS J F.A parametric model of vertical eddy fluxes in the atmosphere[J]. Boundary-layer meteorology, 1979, 17(2): 187-202.
[22] YAMADA T.An application of a three-dimensional, simplified second-moment closure numerical model to study atmospheric effects of a large cooling-pond[J]. Atmospheric environment, 1967, 13(5): 693-704.
[23] BERG J, MANN J, BECHMANN A, et al.The bolund experiment, part I: flow over a steep, three-dimensional hill[J]. Boundary-layer meteorology, 2011, 141(2): 219-243.
[24] BECHMANN A, SØRENSEN N N, BERG J, et al. The bolund experiment, part II: blind comparison of microscale flow models[J]. Boundary-layer meteorology, 2011, 141(2): 245-271.
[25] 姜婷婷, 叶杭冶, 申新贺, 等. 基于风轮面等效风速的风电场发电量评估方法研究[J]. 太阳能学报, 2021, 42(9): 244-249.
JIANG T T, YE H Y, SHEN X H, et al.Research on wind farm power generation assessment based on rotor equivalent wind speed[J]. Acta energiae solaris sinica, 2021, 42(9): 244-249.
基金
国家重点研发计划(2018YFB1501100)