为提高质子交换膜燃料电池(PEMFC)空气系统的动态响应性能,避免局部缺气而导致其输出性能降低等问题的出现,针对空气系统存在流量和压力耦合的问题,分别采用PID、前馈解耦控制和模型预测控制(MPC)对空气系统进行控制,通过仿真和台架测试,验证控制算法的有效性。结果表明,两种控制算法相比较PID均具有较好的控制效果,空气流量和空气压力均能快速跟随设定值,PEMFC发动机的输出性能平稳。
Abstract
In order to improve the dynamic response characteristic of the proton exchange membrane fuel cell(PEMFC) air system and avoid the occurrence of problems such as local lack of gas and the decrease in its output performance, the air system has flow and pressure coupling problems. In this paper, PID, feedforward decoupling control and model predictive control(MPC)are used to control the air system, and the effectiveness of the control algorithm is verified through simulation and bench testing. The results show that the two control algorithms have better control effects compared with PID, the air flow and air pressure can quickly follow the set value, and the output performance of the PEMFC engine is stable.
关键词
质子交换膜燃料电池 /
空气供应系统 /
解耦控制 /
台架试验
Key words
proton exchange membrane fuel cell /
air supply system /
decoupling control /
bench experiment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘宪伟, 薛俊海, 朱威, 等. 非铂燃料电池催化剂研究进展[J]. 太阳能学报, 2022,43(6): 286-294.
LIU X W,XUE J H,ZHU W, et al.Progress on platinum-fuel cell catalysts[J]. Acta energiae solaris sinica, 2022, 43(6): 286-294.
[2] 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171.
LIU Y D, GUO H X, OUYANG X P.Development status and future prospect of hydrogen fuel cell technology[J]. Strategic study of CAE, 2021, 23(4): 162-171.
[3] OLABI A G, WILBERFORCE T, ABDELKAREEM M A.Fuel cell application in the automotive industry and future perspective[J]. Energy, 2021, 214: 118955.
[4] DENG Z H, CHEN Q H, ZHANG L Y, et al.Weighted fusion control for proton exchange membrane fuel cell system[J]. International journal of hydrogen energy,2020, 45(30): 15327-15335.
[5] 胡佳丽, 赵春鹏, 肖铎. 水冷燃料电池空气供给系统建模与控制研究[J]. 太阳能学报, 2021, 42(9): 428-433.
HU J L,ZHAO C P, XIAO D.Modeling and control analysis of water-cooled PEM fuel cell air supply system[J]. Acta energiae solaris sinica, 2021, 42(9): 428-433.
[6] WANG Y H,LI H T, FENG H M, et al.Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy conversion and management, 2021, 249: 114851.
[7] LI J W, GENG J, YU T.Multi-objective optimal control for proton exchange membrane fuel cell via large scale deep reinforcement learning[J]. Energy reports, 2021, 7: 6422-6437.
[8] LIU Z, ZHANG B T, XU S C.Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application[J]. Applied energy, 2022, 309: 118446.
[9] SUN T, ZHANG X, CHEN B, et al.Coordination control strategy for the air management of heavy vehicle fuel cell engine[J]. International journal of hydrogen energy,2020, 45(39): 20360-20368.
[10] 周苏, 胡哲, 谢非. 车用质子交换膜燃料电池空气供应系统自适应解耦控制方法研究[J]. 汽车工程, 2020, 42(2): 173-177.
ZHOU S,HU Z, XIE F.Study on adaptive decoupling control method of proton exchange membrane fuel cell air supply system for vehicle[J]. Automotive engineering,2020, 42(2): 173-177.
[11] SONG D F, ZENG F Y,ZENG X H, et al.Research on dynamic decoupling control of air supplying loop in fuel cell system based on pressure compensation[J]. Journal of mechanical science and technology, 2021, 35(6): 2677-2688.
[12] LIU Z, CHEN H C, PENG L, et al.Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell[J]. Energy, 2022, 240: 122490.
[13] 马义, 张剑, 游美祥, 等. 燃料电池空气系统动态控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(9):2175-2181.
MA Y, ZHANG J, YOU M X, et al.Optimization of dynamic control strategy for fuel cell air system[J]. Journal of Jilin University(engineering and technology edition),2022, 52(9): 2175-2181.
[14] 陈凤祥, 陈俊坚, 许思传, 等. 高压燃料电池系统空气供应解耦控制器设计[J]. 同济大学学报(自然科学版),2014, 42(7): 1096-1100.
CHEN F X, CHEN J J, XU S C, et al.Design of air supply decoupling controller for high pressure fuel cell system[J]. Journal of Tongji University(natural science), 2014, 42(7): 1096-1100.
基金
“十四五”国家重点研发技术氢能专项(2022YFB4003703)