Zhao Fei, Zhang Tianxiang.
MULTI-REGIONAL COMPOSITE SHORT-TERM WIND POWER PREDICTION BASED ON ADAPTIVE OPTIMIZATION AP CLUSTERING AND BP WEIGHTED NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 634-640 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0482
中图分类号:
TM614
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 阎洁, 张永蕊, 张浩. 区域风电场群集中式功率预测系统设计与应用[J]. 分布式能源, 2022, 7(1): 28-36. YAN J, ZHANG Y R, ZHANG H.Design and application of centralized power forecasting system for regional wind farm cluster[J]. Distributed energy, 2022, 7(1): 28-36. [2] 刘光辉. 风电不确定性对系统的影响研究[J]. 山东工业技术, 2017(16): 220. LIU G H.风电不确定性对系统的影响研究[J]. Journal of Shandong industrial technology, 2017(16): 220. [3] HANIFI S, LIU X L, LIN Z, et al.A critical review of wind power forecasting methods: past, present and future[J]. Energies, 2020, 13(15): 3764. [4] 杨茂, 杨琼琼, 苏欣. 基于风电场等效平均风速的风电功率日前预测研究[J]. 太阳能学报, 2020, 41(2): 85-92. YANG M, YANG Q Q, SU X.Research of day-ahead wind power forecast based on wind farm equivalent mean wind speed[J]. Acta energiae solaris sinica, 2020, 41(2): 85-92. [5] 刘文斌, 谢丽蓉, 张革荣. 基于VMD-HS-LSSVM的风电功率短期预测[J]. 现代电子技术, 2022, 45(11): 176-181. LIU W B, XIE L R, ZHANG G R.Short-term wind power prediction based on VMD-HS-LSSVM[J]. Modern electronics technique, 2022, 45(11): 176-181. [6] 李海玲. 基于BP神经网络的风功率预测[J]. 现代信息科技, 2021, 5(15): 119-121, 124. LI H L.Wind power prediction based on BP neural network[J]. Modern information technology, 2021, 5(15): 119-121, 124. [7] 张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42(10): 275-281. ZHANG Q, TANG Z H, WANG G, et al.Ultra-short-term wind power prediction model based on long and short term memory network[J]. Acta energiae solaris sinica, 2021, 42(10): 275-281. [8] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304-311. LI R, MA T, ZHANG X, et al.Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta energiae solaris sinica, 2021, 42(6): 304-311. [9] YU R G, GAO J, YU M, et al.LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future generation computer systems, 2019, 93: 33-42. [10] HAO Y, TIAN C.A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting[J]. Applied energy, 2019, 238: 368-383. [11] 韩爽, 孟航, 刘永前, 等. 增量处理双隐层BP神经网络风电功率预测模型[J]. 太阳能学报, 2015, 36(9): 2238-2244. HAN S, MENG H, LIU Y Q, et al.Study on optimization of BP neural network wind power predicition model with two hidden layers[J]. Acta energiae solaris sinica, 2015, 36(9): 2238-2244. [12] 张秀春, 蔡敏, 张运杰. 基于改进的AP聚类的图像分割算法[C]// 中国自动化学会控制理论专业委员会, 大连, 中国, 2017. ZHANG X C, CAI M, ZHANG Y J.An image segmentation algorithm based on improved affinity propagation[C]// Technical Committee on Control Theory,Chinses Association of Automation. Dalian, China, 2017. [13] GUAN R C, SHI X H, MARCHESE M, et al.Text clustering with seeds affinity propagation[J]. IEEE transactions on knowledge and data engineering, 2011, 23(4): 627-637. [14] 管霖, 周保荣, 文博, 等. 多风电场功率时间序列的时空相关性统计建模和运行模拟方法[J]. 电网技术, 2021, 45(1): 30-39. GUAN L, ZHOU B R, WEN B, et al.Spatiotemporal correlation statistic modeling and simulation in multiple wind farm power sequence[J]. Power system technology, 2021, 45(1): 30-39. [15] 赵海成, 李辉. SA-PSO优化边界最速跟踪微分器在光伏功率平滑中的应用[J]. 电子测量技术, 2022, 45(14): 36-42. ZHAO H C, LI H.Application of variable boundary tracking differentiator optimized by SA-PSO in photovoltaic power smoothing[J]. Electronic measurement technology, 2022, 45(14): 36-42. [16] 赖健琼. 自适应AP聚类算法研究[J]. 计算机时代, 2022(4): 38-42. LAI J Q.Research on adaptive AP clustering algorithm[J]. Computer era, 2022(4): 38-42. [17] 张慧娥, 刘大贵, 朱婷婷, 等. 基于相似日和动量法优化BP神经网络的光伏短期功率预测研究[J]. 智慧电力, 2021, 49(6): 46-52. ZHANG H E, LIU D G, ZHU T T, et al.Short-term PV power prediction based on BP neural network optimized by similar daily and momentum method[J]. Smart power, 2021, 49(6): 46-52. [18] 李根银, 郁冶, 王异成, 等. 风电场功率预测的研究进展及发展趋势[J/OL]. 排灌机械工程学报: 1-8[2023-04-05]. LI G Y, YU Y, WANG Y C, et al.Research progress and development trend of wind farm power prediction[J/OL]. Journal of drainage and irrigation machinery engineering: 1-8[2023-04-05]. [19] ZHANG J A, LIU D, LI Z J, et al.Power prediction of a wind farm cluster based on spatiotemporal correlations[J]. Applied energy, 2021, 302: 117568. [20] 王佳钰, 郝思鹏, 李森文, 等. 基于ES-GRU-LSTM的风电场群功率预测[J]. 计算技术与自动化, 2022, 41(3): 37-41. WANG J Y, HAO S P, LI S W, et al.Power prediction of wind farm group based on ES-GRU-LSTM[J]. Computing technology and automation, 2022, 41(3): 37-41. [21] 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11): 1-6. WU J H, SHAO Z G, YANG S H, et al.Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical engineering, 2020, 21(11): 1-6. [22] 姚琦, 柳玉, 白恺, 等. 风电场功率预测水平的多指标综合评价方法研究[J]. 太阳能学报, 2019, 40(2): 333-340. YAO Q, LIU Y, BAI K, et al.Study of multi-index comprehensive evaluation method for wind farm power prediction level[J]. Acta energiae solaris sinica, 2019, 40(2): 333-340.