基于红外热成像的围护结构热工性能定量检测方法研究进展

李环宇, 冯国会, 刘馨, 蒲毅, 王涵

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 427-437.

PDF(1191 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1191 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 427-437. DOI: 10.19912/j.0254-0096.tynxb.2023-0487

基于红外热成像的围护结构热工性能定量检测方法研究进展

  • 李环宇, 冯国会, 刘馨, 蒲毅, 王涵
作者信息 +

RESEARCH PROGRESS OF QUANTITATIVE DETECTION METHODS FOR THERMAL PROPERTIES OF ENVELOPE STRUCTURES BASED ON INFRARED THERMAL IMAGING

  • Li Huanyu, Feng Guohui, Liu Xin, Pu Yi, Wang Han
Author information +
文章历史 +

摘要

综述红外热成像技术在建筑围护结构热工性能定量检测领域的研究成果,介绍国内外定量红外热成像法的理论基础、发展历程以及在量化热工缺陷能量损失中的应用,从构建稳态热流环境、对流辐射换热计算、测试操作选择3个方面总结现场检测的影响因素,归纳图像处理技术在排除光学干扰、辨识热工缺陷、热工信息可视化等方面对红外检测领域的贡献,分析未来红外热成像的应用前景与发展方向。研究表明,红外热成像技术可成为围护结构热工性能定量检测与热工缺陷量化识别的优秀方法。

Abstract

The research results of infrared thermography technology in the field of quantitative thermal properties detection of building envelope are reviewed. The theoretical basis, development history and application of quantitative infrared thermography in quantifying energy loss of thermal defects at home and abroad are introduced. The influencing factors of on-site detection are summarized from three aspects: construction of steady-state heat flow environment, calculation of convection and radiation heat transfer, and selection of test operation. The contribution of image processing technology to infrared detection field is summarized in the exclusion of optical interference, identification of thermal defects, thermal information visualization and so on. The application prospect and development direction of infrared thermography technology in the future are analyzed. The research shows that infrared thermography technology can be an excellent method to quantitatively detect thermal properties and identify thermal defects of envelope structures.

关键词

红外成像 / 热工性能 / 图像处理 / 定量检测 / 热工缺陷 / 建筑节能

Key words

infrared imaging / thermal properties / image processing / quantitative detection / thermal defect / building energy conservation

引用本文

导出引用
李环宇, 冯国会, 刘馨, 蒲毅, 王涵. 基于红外热成像的围护结构热工性能定量检测方法研究进展[J]. 太阳能学报. 2024, 45(7): 427-437 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0487
Li Huanyu, Feng Guohui, Liu Xin, Pu Yi, Wang Han. RESEARCH PROGRESS OF QUANTITATIVE DETECTION METHODS FOR THERMAL PROPERTIES OF ENVELOPE STRUCTURES BASED ON INFRARED THERMAL IMAGING[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 427-437 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0487
中图分类号: TU111   

参考文献

[1] GB 55015—2021, 建筑节能与可再生能源利用通用规范[S].
GB 55015—2021, General code for energy efficiency and renewable energy application in buildings[S].
[2] 丁有发, 陈盛军, 李春诚, 等. 红外热像技术用于热设备保温效果评估[J]. 激光与红外, 1997, 27(3): 148-151.
DING Y F, CHEN S J, LI C C, et al.Application of IR thermal imaging technique on apraisal of insulating effect of heat-equipment[J]. Laser & infrared, 1997, 27(3): 148-151.
[3] 王珊珊. 建筑物墙体保温性能的红外检测方法的研究[D]. 南京: 南京航空航天大学, 2006.
WANG S S.Study of an infrared detection method which is used in building masonry wall's insulting[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
[4] 张炜, 李安桂. 应用于建筑热工现场检测的红外热像技术与定量化分析[J]. 红外技术, 2007, 29(6): 311-315.
ZHANG W, LI A G.Application of infrared thermal image technology in detection of construction thermal performance and quantitative analysis[J]. Infrared technology, 2007, 29(6): 311-315.
[5] 张炜. 应用于建筑热工现场检测的红外热像技术与定量化分析[D]. 西安: 西安建筑科技大学, 2006.
ZHANG W.Application of infrared thermal image technology in detection of construction thermal performance and quantitative analysis[D]. Xi'an: Xi'an University of Architecture and Technology, 2006.
[6] 张剑峰. 红外热成像技术在建筑外墙热工缺陷及节能建筑评估中的应用技术研究[D]. 成都: 西南交通大学, 2019.
ZHANG J F.Application of external thermal imaging technology in thermal engineering defects and evaluation[D]. Chengdu: Southwest Jiaotong University, 2019.
[7] 解国梁. 基于红外热像技术辨识建筑墙体传热系数的研究[D]. 呼和浩特: 内蒙古农业大学, 2011.
XIE G L.Investigation of identifying the heat transfer coefficient of wall based on infrared imaging technology[D]. Hohhot: Inner Mongolia Agricultural University, 2011.
[8] 熊国华, 彭小云, 潘阳, 等. 基于红外热像技术的热阻测定方法研究[J]. 四川建筑科学研究, 2013, 39(1): 322-325.
XIONG G H, PENG X Y, PAN Y, et al.Study on thermal resistance measurement method base on infrared thermal imaging technology[J]. Sichuan building science, 2013, 39(1): 322-325.
[9] MUNIS R H, MARSHALL S J, BUSH M A.Detecting structural heat losses with mobile infrared thermography. Part IV. estimating quantitative heat loss at dartmouth college, hanover, new hampshire[R]. Cold regions research and engineering Lab Hanover Nh, 1976.
[10] MCQUEEN SMITH B.Condition monitoring by thermography[J]. NDT international, 1978, 11(3): 121-122.
[11] GOLDSTEIN R J.Application of aerial infrared thermography to the measurement of building heat loss[J]. Ashrae transactions, 1978, 84: 207-226.
[12] SCHOTT J R, WILKINSON E P.Quantitative methods in aerial thermography[J]. Optical engineering, 1982, 21(5): 864.
[13] BOWMAN R L, JACK J R. Feasibility of determining flat roof heat losses using aerial thermography[C]// Intern. Symp. on Remote Sensing of Environment.1979 (NASA-TM-79152).
[14] MADDING R.Finding R-values of stud frame constructed houses with IR thermography[J]. Proc. InfraMation, 2008: 261-277.
[15] ALBATICI R, TONELLI A M.Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site[J]. Energy and buildings, 2010, 42(11): 2177-2183.
[16] FOKAIDES P A, KALOGIROU S A.Application of infrared thermography for the determination of the overall heat transfer coefficient (U-value) in building envelopes[J]. Applied energy, 2011, 88(12): 4358-4365.
[17] DANIELSKI I, FRÖLING M. Diagnosis of buildings' thermal performance-a quantitative method using thermography under non-steady state heat flow[J]. Energy procedia, 2015, 83: 320-329.
[18] TEJEDOR B, CASALS M, GANGOLELLS M, et al.Quantitative internal infrared thermography for determining in situ thermal behaviour of façades[J]. Energy & buildings, 2017, 151: 187-197.
[19] 方修睦, 王杨洋, 王中华. 建筑外围护结构表面热工缺陷红外检测方法研究[J]. 施工技术, 2006, 35(4): 54-56.
FANG X M, WANG Y Y, WANG Z H.Research on thermodynamic disfigurement infrared inspection method about the building external envelope structure surface[J]. Construction technology, 2006, 35(4): 54-56.
[20] 杨丽萍. 红外热成像法探测建筑围护结构热工缺陷研究[D]. 西安: 西安建筑科技大学, 2010.
YANG L P.Study on testing thermal defects of building envelope using infrared thermography[D]. Xi'an: Xi'an University of Architecture and Technology, 2010.
[21] 张玲玲, 许廒, 张继冉, 等. 基于红外图像处理技术的建筑外窗缺陷面积计算研究[J]. 红外技术, 2022, 44(12): 1358-1366.
ZHANG L L, XU A, ZHANG J R, et al.Research on calculation of defect area of building exterior windows based on infrared image processing technology[J]. Infrared technology, 2022, 44(12): 1358-1366.
[22] 张玲玲, 任攀攀, 许廒, 等. 基于红外图像处理的建筑外窗气密性能现场检测[J]. 红外技术, 2023, 45(4): 410-416.
ZHANG L L, REN P P, XU A, et al.On-site detection of airtightness of building windows based on infrared image processing[J]. Infrared technology, 2023, 45(4): 410-416.
[23] ASDRUBALI F, BALDINELLI G, BIANCHI F.A quantitative methodology to evaluate thermal bridges in buildings[J]. Applied energy, 2012, 97: 365-373.
[24] BIANCHI F, PISELLO A, BALDINELLI G, et al.Infrared thermography assessment of thermal bridges in building envelope: experimental validation in a test room setup[J]. Sustainability, 2014, 6(10): 7107-7120.
[25] O' GRADY M, LECHOWSKA A A, HARTE A M.Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridging[J]. Energy and buildings, 2017, 135: 20-32.
[26] O'GRADY M, LECHOWSKA A A, HARTE A M. Application of infrared thermography technique to the thermal assessment of multiple thermal bridges and windows[J]. Energy & buildings, 2018, 168: 347-362.
[27] MAHMOODZADEH M, GRETKA V, HAY K, et al.Determining overall heat transfer coefficient (U-value) of wood-framed wall assemblies in Canada using external infrared thermography[J]. Building and environment, 2021, 199: 107897.
[28] TEJEDOR B, CASALS M, GANGOLELLS M.Assessing the influence of operating conditions and thermophysical properties on the accuracy of in situ measured U-values using quantitative internal infrared thermography[J]. Energy & buildings, 2018, 171: 64-75.
[29] NARDI I, PAOLETTI D, AMBROSINI D, et al.U-value assessment by infrared thermography: a comparison of different calculation methods in a Guarded Hot Box[J]. Energy and buildings, 2016, 122: 211-221.
[30] DALL'O'G, SARTO L, PANZA A. Infrared screening of residential buildings for energy audit purposes: results of a field test[J]. Energies, 2013, 6(8): 3859-3878.
[31] ALBATICI R, TONELLI A M, CHIOGNA M.A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance[J]. Applied energy, 2015, 141: 218-228.
[32] OHLSSON K E A, OLOFSSON T. Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface[J]. Applied energy, 2014, 134: 499-505.
[33] LU X R, MEMARI A.Application of infrared thermography for in-situ determination of building envelope thermal properties[J]. Journal of building engineering, 2019, 26: 100885.
[34] O'GRADY M, LECHOWSKA A A, HARTE A M. Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique[J]. Applied energy, 2017, 208: 1038-1052.
[35] ALBATICI R, PASSERINI F, TONELLI A M, et al.Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometer[J]. Energy and buildings, 2013, 66: 33-40.
[36] PAPADAKOS G, MARINAKIS V, KONSTAS C, et al.Managing the uncertainty of the U-value measurement using an auxiliary set along with a thermal camera[J]. Energy and buildings, 2021, 242: 110984.
[37] TZIFA V, PAPADAKOS G, PAPADOPOULOU A G, et al.Uncertainty and method limitations in a short-time measurement of the effective thermal transmittance on a building envelope using an infrared camera[J]. International journal of sustainable energy, 2017, 36(1): 28-46.
[38] FOX M, COLEY D, GOODHEW S, et al.Time-lapse thermography for building defect detection[J]. Energy and buildings, 2015, 92: 95-106.
[39] TEJEDOR B, CASALS M, MACARULLA M, et al.U-value time series analyses: Evaluating the feasibility of in-situ short-lasting IRT tests for heavy multi-leaf walls[J]. Building and environment, 2019, 159: 106123.
[40] SFARRA S, CICONE A, YOUSEFI B, et al.Improving the detection of thermal bridges in buildings via on-site infrared thermography: the potentialities of innovative mathematical tools[J]. Energy and buildings, 2019, 182: 159-171.
[41] MAHMOODZADEH M, GRETKA V, LEE I, et al.Infrared thermography for quantitative thermal performance assessment of wood-framed building envelopes in Canada[J]. Energy and buildings, 2022, 258: 111807.
[42] BALDINELLI G, BIANCHI F, ROTILI A, et al.A model for the improvement of thermal bridges quantitative assessment by infrared thermography[J]. Applied energy, 2018, 211: 854-864.
[43] ASDRUBALI F, BALDINELLI G, BIANCHI F, et al.Detection of thermal bridges from thermographic images by means of image processing approximation algorithms[J]. Applied mathematics and computation, 2018, 317: 160-171.
[44] GARRIDO I, LAGÜELA S, ARIAS P, et al. Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings[J]. Energy and buildings, 2018, 158: 1358-1367.
[45] 苏洪超, 胡英, 洪少壮. 基于红外图像特征与K-means的边缘检测[J]. 红外技术, 2020, 42(1): 81-85.
SU H C, HU Y, HONG S Z.Edge detection based on characteristics of infrared image and K-means[J]. Infrared technology, 2020, 42(1): 81-85.
[46] 王东升, 王海龙, 张芳, 等. 基于时序信息的红外图像缺陷信息提取[J]. 红外技术, 2022, 44(6): 565-570.
WANG D S, WANG H L, ZHANG F, et al.Infrared image defect information extraction based on temporal information[J]. Infrared technology, 2022, 44(6): 565-570.
[47] 李洁, 袁知博, 秦嘉悦. 基于Sobel算子边缘检测的太阳电池缺陷特征提取方法[J]. 太阳能学报, 2021, 42(1): 63-68.
LI J, YUAN Z B, QIN J Y.Research on solar cells defects feature extraction based on sobel operator edge detection[J]. Acta energiae solaris sinica, 2021, 42(1): 63-68.
[48] 梁轶循. 基于红外热像的外墙外保温系统缺陷识别判定与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
LIANG Y X.Research on defect identification, judgment and evaluation method of external thermal insulation system of external wall based on infrared thermal image[D]. Harbin: Harbin Institute of Technology, 2021.
[49] LU Y, DUANMU L, ZHAI Z J, et al.Application and improvement of Canny edge-detection algorithm for exterior wall hollowing detection using infrared thermal images[J]. Energy and buildings, 2022, 274: 112421.
[50] NAGESH K N, SHWETA D, JASON B, et al.Comparative analysis of infrared thermography processing techniques for roadways' sub-pavement voids detection[J]. NDT and E international, 2022, 129: 102652.
[51] WANG K, ZHANG J, NI H, et al.Thermal defect detection for substation equipment based on infrared image using convolutional neural network[J]. Electronics, 2021, 10(16): 1986.
[52] GARRIDO I, LAGÜELA S, FANG Q, et al. Introduction of the combination of thermal fundamentals and Deep Learning for the automatic thermographic inspection of thermal bridges and water-related problems in infrastructures[J]. Quantitative InfraRed thermography journal, 2023, 20(5): 231-255.
[53] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[54] 孙海蓉, 周映杰. 基于散点图-AlexNet网络的光伏红外热图像识别方法[J]. 太阳能学报, 2023, 44(1): 55-61.
SUN H R, ZHOU Y J.Photovoltaic infrared thermal image recognition method based on scatter plot-alexnet network[J]. Acta energiae solaris sinica, 2023, 44(1): 55-61.
[55] 刘颖. 基于深度学习的红外墙体裂缝高精度检测技术研究[D]. 北京: 北京邮电大学, 2021.
LIU Y.High precision detection technology of infrared wall cracks based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
[56] SADHUKHAN D, PERI S, SUGUNARAJ N, et al.Estimating surface temperature from thermal imagery of buildings for accurate thermal transmittance (U-value): a machine learning perspective[J]. Journal of building engineering, 2020, 32: 101637.
[57] 陈崇一. 基于机器学习的建筑外墙外保温热工缺陷检测方法[D]. 哈尔滨: 哈尔滨工业大学, 2018.
CHEN C Y.Detection method of thermal engineering defects in exterior thermal insulation buildings based on machine learning[D]. Harbin: Harbin Institute of Technology, 2018.
[58] 陈琳. 基于红外热成像的北方居住建筑外墙热阻辨识方法[D]. 哈尔滨: 哈尔滨工业大学, 2020.
CHEN L.Identification method for thermal resistance of northern residential building exterior walls assisted with infrared thermography[D]. Harbin: Harbin Institute of Technology, 2020.
[59] VIDAS S, MOGHADAM P.HeatWave: a handheld 3D thermography system for energy auditing[J]. Energy and buildings, 2013, 66: 445-460.
[60] GONZÁLEZ-AGUILERA D, LAGÜELA S, RODRÍGUEZ-GONZÁLVEZ P, et al. Image-based thermographic modeling for assessing energy efficiency of buildings façades[J]. Energy & buildings, 2013, 65: 29-36.
[61] PREVITALI M, BARAZZETTI L, BRUMANA R, et al.Thermographic analysis from UAV platforms for energy efficiency retrofit applications[J]. Journal of mobile multimedia, 2013: 066-082.
[62] TEJEDOR B, BARREIRA E, ALMEIDA R M S F, et al. Thermographic 2D U-value map for quantifying thermal bridges in building façades[J]. Energy and buildings, 2020, 224: 110176.
[63] BLANCA T, EVA B, ALMEIDA RICARDO M S F, et al. Automated data-processing technique: 2D map for identifying the distribution of the U-value in building elements by quantitative internal thermography[J]. Automation in construction, 2021, 122: 103478.

基金

国家自然科学基金(51778376); 辽宁省教育厅面上项目(LJKZ0577); 沈阳市科学计划项目(21-108-9-03)

PDF(1191 KB)

Accesses

Citation

Detail

段落导航
相关文章

/