考虑需求侧灵活性资源(简称“资源”)配置,开展网-荷-储联合规划是提升配电网灵活性以适应新能源出力波动的关键途径。为此提出一种灵活性缺失场景筛选与不确定性分析方法改进相结合的配电网规划研究模型:首先,立足资源视角进行配电网灵活性供需关系建模;其次,基于影子价格理论提出配电网灵活性缺失场景筛选策略,建立筛选指标以描述规划资源、运行约束、场景筛选间闭环关系;然后,将该策略嵌入配电网-多资源两阶段联合规划模型,一阶段考虑投资成本最优,二阶段协调运行及灵活性综合成本期望;将规划模型重构并于改进场景概率驱动型分布鲁棒优化(ISPD-DRO)框架下求解,其优势在于实现了概率优化求解与场景动态更新的有机统一;最后经算例分析验证所提模型在提升决策经济性及配电网灵活性层面的优势。
Abstract
Considering the allocation of demand-side flexible resources (referred to as “resources”), the joint planning of grid-load-storage is a critical way to improve the flexibility of the distribution network to adapt to the fluctuation of new energy output. Given this,we propose a research model for distribution network planning combining scenario selection for lack of flexibility and improvement of uncertainty analysis method. Firstly,the distribution network's flexible supply and demand relationship is modeled from the perspective of resources. Secondly, based on shadow price theory, a scenario selection strategy for distribution network flexibility lackness is proposed, and screening indicators are established to describe the closed-loop relationship between planning resources, operation constraints and scenario screening. Then, the strategy is embedded in the distribution network-multi-resource two-stage joint planning model, the first stage considers the optimal investment cost, and the second stage coordinates operation and flexibility comprehensive cost expectations. The planning model is reconstructed and solved under the framework of improved distributionally robust optimization based on scenario probability driven (ISPD-DRO), which has the advantage of realizing the organic unity of probability optimization solution and scene dynamic update. Finally, combined with the case analysis, the advantages of the proposed model in improving decision-making economy and distribution network flexibility are verified.
关键词
需求侧灵活性资源 /
影子价格理论 /
场景筛选 /
改进场景概率驱动型分布鲁棒优化 /
配电网规划
Key words
demand side flexible resources /
shadow price theory /
scenario selection /
improved distributionally robust optimization based on scenario probability driven /
distribution network planning
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
LU Z X, LI H B, QIAO Y.Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of electric power systems, 2016, 40(13): 147-158.
[2] 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37-48.
WANG C X, SHI Z Y, LIANG Z F, et al.Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of electric power systems, 2021, 45(16): 37-48.
[3] 朱晓荣, 山雨琦. 考虑灵活性的储能容量多阶段分布鲁棒规划[J]. 电力自动化设备, 2023, 43(6): 152-159, 167.
ZHU X R, SHAN Y Q.Robust planning of energy storage in distribution network considering[J]. Electric power automation equipment, 2023, 43(6): 152-159, 167.
[4] ASENSIO M, MENESES DE QUEVEDO P, MUÑOZ-DELGADO G, et al. Joint distribution network and renewable energy expansion planning considering demand response and energy storage: Part I: stochastic programming model[J]. IEEE transactions on smart grid, 2018, 9(2): 655-666.
[5] HUANG Y X, LIN Z Z, LIU X Y, et al.Bi-level coordinated planning of active distribution network considering demand response resources and severely restricted scenarios[J]. Journal of modern power systems and clean energy, 2021, 9(5): 1088-1100.
[6] 樊安洁. 考虑灵活性的交直流配电网规划研究[D]. 南京: 东南大学, 2019.
FAN A J.Reasearch on AC/DC hybrid distribution network planning considering flexibility[D]. Nanjing: Southeast University, 2019.
[7] 任智君, 郭红霞, 杨苹, 等. 含高比例可再生能源配电网灵活资源双层优化配置[J]. 太阳能学报, 2021, 42(9): 33-38.
REN Z J, GUO H X, YANG P, et al.Double-layer optimal configuration of flexible resources with high proportion of renewable energy distribution network[J]. Acta energiae solaris sinica, 2021, 42(9): 33-38.
[8] 赵海波, 邢亚虹, 康一鸣, 等. 计及运行灵活性的配电网双层规划[J]. 现代电力, 2023, 40(5): 817-826.
ZHAO H B, XING Y H, KANG Y M, et al.Double layer planning of distribution network considering operational flexibility[J]. Modern electric power, 2023, 40(5): 817-826.
[9] RAHIMIAN H, MEHROTRA S. Distributionally robust optimization: a review[EB/OL].2019: arXiv: 1908.05659. http://arxiv.org/abs/1908.05659.
[10] 贺帅佳, 阮贺彬, 高红均, 等. 分布鲁棒优化方法在电力系统中的理论分析与应用综述[J]. 电力系统自动化, 2020, 44(14): 179-191.
HE S J, RUAN H B, GAO H J, et al.Overview on theory analysis and application of distributionally robust optimization method in power system[J]. Automation of electric power systems, 2020, 44(14): 179-191.
[11] 贺帅佳, 高红均, 刘俊勇, 等. 计及需求响应柔性调节的分布鲁棒DG优化配置[J]. 中国电机工程学报, 2019, 39(8): 2253-2264.
HE S J, GAO H J, LIU J Y, et al.Distributionally robust optimal DG allocation model considering flexible adjustment of demand response[J]. Proceedings of the CSEE, 2019, 39(8): 2253-2264.
[12] 郑晓东, 陈皓勇, 段声志, 等. 基于场景概率驱动的输电网和储能分布鲁棒规划[J]. 电力自动化设备, 2022, 42(6): 170-178.
ZHENG X D, CHEN H Y, DUAN S Z, et al.Distributionally robust planning of transmission network and energy storage based on scenario probability-driven[J]. Electric power automation equipment, 2022, 42(6): 170-178.
[13] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电气能源系统两阶段分布鲁棒协同调度[J]. 电力系统自动化, 2018, 42(13): 43-50, 75.
SHUI Y, LIU J Y, GAO H J, et al.Two-stage distributed robust cooperative dispatch for integrated electricity and natural gas energy systems considering uncertainty of wind power[J]. Automation of electric power systems, 2018, 42(13): 43-50, 75.
[14] 张艺镨, 艾小猛, 方家琨, 等. 基于极限场景的两阶段含分布式电源的配网无功优化[J]. 电工技术学报, 2018, 33(2): 380-389.
ZHANG Y P, AI X M, FANG J K, et al.Two-stage reactive power optimization for distribution network with distributed generation based on extreme scenarios[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 380-389.
[15] 梁子鹏, 陈皓勇, 郑晓东, 等. 考虑风电极限场景的输电网鲁棒扩展规划[J]. 电力系统自动化, 2019, 43(16): 58-67.
LIANG Z P, CHEN H Y, ZHENG X D, et al.Robust expansion planning of transmission network considering extreme scenario of wind power[J]. Automation of electric power systems, 2019, 43(16): 58-67.
[16] KARIMI-ARPANAHI S, JOOSHAKI M, MOEINI-AGHTAIE M, et al.Incorporating flexibility requirements into distribution system expansion planning studies based on regulatory policies[J]. International journal of electrical power & energy systems, 2020, 118: 105769.
[17] 王颖, 许寅, 和敬涵, 等. 基于断线解环思想的配电网辐射状拓扑约束建模方法[J]. 中国电机工程学报, 2021, 41(7): 2395-2404.
WANG Y, XU Y, HE J H, et al.Radiality constraint modelling method in distribution network based on cutting-line and opening-loop idea[J]. Proceedings of the CSEE, 2021, 41(7): 2395-2404.
[18] MUÑOZ-DELGADO G, CONTRERAS J, ARROYO J M. Joint expansion planning of distributed generation and distribution networks[J]. IEEE transactions on power systems, 2015, 30(5): 2579-2590.
[19] 高红均, 刘俊勇. 考虑不同类型DG和负荷建模的主动配电网协同规划[J]. 中国电机工程学报, 2016, 36(18): 4911-4922, 5115.
GAO H J, LIU J Y.Coordinated planning considering different types of DG and load in active distribution network[J]. Proceedings of the CSEE, 2016, 36(18): 4911-4922, 5115.