为研究齿面粗糙度对行星轮系动力学特性的影响,提出行星轮系齿轮副动态承载接触分析与系统振动位移耦合方法。以某型兆瓦级风电齿轮箱行星轮系为研究对象,基于分形理论对轮齿粗糙表面进行分形表征,通过齿轮副啮合变形协调条件,构建齿面动态承载接触状态与构件振动位移、粗糙齿面啮合误差以及摩擦力的关联关系,建立风电齿轮箱行星轮系动力学模型,分析粗糙齿面啮合误差与摩擦力对系统动态特性的影响。结果表明:随着粗糙度的增大,齿面载荷峰值与波动幅值增大,动态啮合刚度幅值出现明显波动,均载性能降低;增大粗糙度会降低行星轮系临界转速,在低转速区域内,其具有激励增振作用,而在临界转速区域附近,其具有阻尼减振作用;摩擦力主要影响行星轮系各构件振动位移,可改变动态啮合力在少齿啮合区的幅值。
Abstract
To investigate the influences of tooth roughness on the dynamic characteristics of the planetary gear train, a coupling method between the dynamic loaded-tooth contact analysis and vibration displacements of the planetary gear train is proposed. Taking the planetary gear train in the megawatt-level wind turbine gearbox as the research object, the fractal theory is used to characterize the rough tooth surface. Based on the compliance conditions of gear mesh deformations, the relationship among the dynamic loaded-tooth contact status, the component’s vibration displacements, mesh errors, and friction forces of the rough tooth is established. A dynamic model of the planetary gear train in the wind turbine gearbox is constructed, and the influences of mesh errors and friction forces of the rough tooth on the system's dynamic characteristics are analyzed. The results show that as the tooth roughness increases, the peak and fluctuation amplitude of the tooth surface load increase, and the dynamic mesh stiffness shows obvious serrations, resulting in reduced load-sharing performance. Increasing tooth roughness reduces the critical speed of the planetary gear train. In the low-speed region, tooth roughness has an excitation effect, while in the vicinity of the critical-speed region, it has a damping effect. Friction forces mainly affect the vibration displacement of each component in the planetary gear train and change the amplitude of the dynamic mesh force in the less-tooth meshing zone.
关键词
风电机组 /
齿轮传动 /
动力学 /
行星轮系 /
齿面载荷
Key words
wind turbines /
gear transmissions /
dynamics /
planetary gear train /
tooth load
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HE S, GUNDA R, SINGH R.Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of sound and vibration, 2007, 301(3-5): 927-949.
[2] HE S, SINGH R, PAVIC’G. Effect of sliding friction on gear noise based on a refined vibro-acoustic formulation[J]. Noise control engineering journal, 2008, 56(3): 164-175.
[3] 王征兵, 刘忠明, 师陆冰, 等. 斜齿轮时变摩擦激励与啮合效率研究[J]. 机械传动, 2022, 46(8): 39-46, 60.
WANG Z B, LIU Z M, SHI L B, et al.Study on time-varying friction excitation and meshing efficiency of helical gears[J]. Journal of mechanical transmission, 2022, 46(8): 39-46, 60.
[4] BENEDICT G H, KELLEY B W.Instantaneous coefficients of gear tooth friction[J]. A S L E transactions, 1961, 4(1): 59-70.
[5] KELLEY B W, LEMANSKI A J.Paper 11: lubrication of involute gearing[J]. Proceedings of the institution of mechanical engineers, conference proceedings, 1967, 182(1): 173-184.
[6] XU H.Development of a generalized mechanical efficiency prediction methodology for gear pairs[M]. Columbus: The Ohio State University, 2005.
[7] 邹玉静, 常德功. 考虑动载荷和表面粗糙度的渐开线齿轮摩擦因数的研究[J]. 工程设计学报, 2014, 21(3): 285-291.
ZOU Y J, CHANG D G.Friction coefficient analysis of involute spur gears with consideration of dynamic load and surface roughness[J]. Chinese journal of engineering design, 2014, 21(3): 285-291.
[8] 周长江, 唐进元, 钟志华. 齿轮传动的线外啮合与冲击摩擦[J]. 机械工程学报, 2008, 44(3): 75-81.
ZHOU C J, TANG J Y, ZHONG Z H.Corner contact and impact friction of gear drive[J]. Chinese journal of mechanical engineering, 2008, 44(3): 75-81.
[9] VELEX P, SAINSOT P.An analytical study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism and machine theory, 2002, 37(7): 641-658.
[10] LIU G, PARKER R G.Impact of tooth friction and its bending effect on gear dynamics[J]. Journal of sound and vibration, 2009, 320(4/5): 1039-1063.
[11] HE S, CHO S, SINGH R.Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations[J]. Journal of sound and vibration, 2008, 309(3/4/5): 843-851.
[12] HE S, SINGH R.Dynamic transmission error prediction of helical gear pair under sliding friction using floquet theory[J]. Journal of mechanical design, 2008, 130(5): 052603.
[13] HOU S S, WEI J, ZHANG A Q, et al.Study of dynamic model of helical/herringbone planetary gear system with friction excitation[J]. Journal of computational and nonlinear dynamics, 2018, 13(12): 121007.
[14] LUO W, QIAO B J, SHEN Z X, et al.Influence of sliding friction on the dynamic characteristics of a planetary gear set with the improved time-varying mesh stiffness[J]. Journal of mechanical design, 2020, 142(7): 073302.
[15] 田德, 胡玥, 陶立壮. 风电齿轮箱浮动构件支撑刚度的分析与优化设计[J]. 太阳能学报, 2023, 44(4): 195-202.
TIAN D, HU Y, TAO L Z.Analysis and optimization design of support stiffness of floating components of wind turbine gearbox[J]. Acta energiae solaris sinica, 2023, 44(4): 195-202.
[16] 王涛, 唐增宝, 钟毅芳. 齿轮传动的动态啮合刚度[J]. 华中理工大学学报, 1992, 20(3): 39-44.
WANG T, TANG Z B, ZHONG Y F.The dynamic meshing stiffness of gear transmission[J]. Journal of Huazhong University of Science and Technology (natural science edition), 1992, 20(3): 39-44.
[17] CAI Y, HAYASHI T.The linear approximated equation of vibration of a pair of spur gears (theory and experiment)[J]. Journal of mechanical design, 1994, 116(2): 558-564.
[18] MATSUMURA S, UMEZAWA K, HOUJOH H.Rotational vibration of a helical gear pair having tooth surface deviation during transmission of light load[J]. JSME international journal Ser C, Dynamics, control, robotics, design and manufacturing, 1996, 39(3): 614-620.
[19] CAO Z, CHEN Z G, JIANG H J.Nonlinear dynamics of a spur gear pair with force-dependent mesh stiffness[J]. Nonlinear dynamics, 2020, 99(2): 1227-1241.
[20] TAN J J, ZHU C C, SONG C S, et al.Study on the dynamic modeling and natural characteristics of wind turbine drivetrain considering electromagnetic stiffness[J]. Mechanism and machine theory, 2019, 134: 541-561.
[21] TAN J J, LI H, TANG H, et al.Dynamic modeling and analysis of planetary gear train system considering structural flexibility and dynamic multi-teeth mesh process[J]. Mechanism and machine theory, 2023, 186:105348.
[22] 赵昕, 陈长征, 刘杰, 等. 考虑齿轮偏心的风力机齿轮箱高速级传动系统非线性动力响应分析[J]. 太阳能学报, 2020, 41(3): 98-108.
ZHAO X, CHEN C Z, LIU J, et al.Nonlinear dynamic response analysis of high level of wind turbine gearbox transmission system considering eccentricity[J]. Acta energiae solaris sinica, 2020, 41(3): 98-108.
[23] 朱华, 葛世荣. 摩擦力和摩擦振动的分形行为研究[J]. 摩擦学学报, 2004, 24(5): 433-437.
ZHU H, GE S R.Study on the fractal behaviors of frictional forces and vibrations[J]. Tribology, 2004, 24(5): 433-437.
[24] CHEN K K, MA H, CHE L Y, et al.Comparison of meshing characteristics of helical gears with spalling fault using analytical and finite-element methods[J]. Mechanical systems and signal processing, 2019, 121: 279-298.
[25] NATALI C, BATTARRA M, DALPIAZ G, et al.A critical review on FE-based methods for mesh stiffness estimation in spur gears[J]. Mechanism and machine theory, 2021, 161: 104319.
[26] ZHONG W X, CAI Z Q.Precise integration method for LQG optimal measurement feedback control problem[J]. Applied mathematics and mechanics, 2000, 21(12): 1417-1422.
基金
国家重点研发计划(2020YFB1506600); 国家自然科学基金(52105050); 广东省重点研发计划(2021B0101230002)