一种单级式高频隔离光伏并网逆变器及其调制方法

朱文杰, 曹晓雅, 李学武, 李云飞, 周克亮, 周翔

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 474-485.

PDF(4279 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4279 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 474-485. DOI: 10.19912/j.0254-0096.tynxb.2023-0490

一种单级式高频隔离光伏并网逆变器及其调制方法

  • 朱文杰1, 曹晓雅1, 李学武1, 李云飞1, 周克亮2, 周翔3
作者信息 +

A SINGLE STAGE HIGH FREQUENCY ISOLATED PHOTOVOLTAIC GRID-CONNECTED INVERTER AND ITS MODULATION METHOD

  • Zhu Wenjie1, Cao Xiaoya1, Li Xuewu1, Li Yunfei1, Zhou Keliang2, Zhou Xiang3
Author information +
文章历史 +

摘要

针对光伏并网系统中可实现双向功率流的单级式高频隔离逆变器,提出一种调制方法,结合电压钳位技术,解决了传统高频隔离光伏并网逆变器变压器二次侧的电压尖峰和振荡问题。该逆变器为两级功率变换,对其工作过程及原理进行详细分析,建立等效电路模型,并推导出该逆变器的数学模型。为弥补传统多谐振控制器的不足,研究一种针对单级式高频隔离光伏并网逆变器的相位补偿的多谐振控制器,在单级式结构中完成最大功率点跟踪(MPPT)和对并网电流的精确控制。最后对所提高频隔离光伏并网逆变器的调制方法及其控制策略进行实验验证。

Abstract

A modulation method is proposed for a single-stage high frequency isolated inverter that can realize bidirectional power flow in grid-connected photovoltaic systems. The proposed modulation method and the voltage clamp technique are used to eliminate the secondary-side voltage spikes and oscillations of the transformer of the traditional high frequency isolated photovoltaic grid-connected inverter. The inverter is a two-stage power converter. Its operating process and principle are analyzed in detail, the equivalent circuit model is established, and the mathematical model of the inverter is derived. In order to overcome the shortcomings of traditional multi-resonant controller, a phase compensation multi-resonant controller is developed for the single stage high-frequency isolated photovoltaic grid-connected inverter. Maximum power point tracking (MPPT) and accurate control of grid-connected current are achieved in a single stage structure. Finally, the modulation method and control strategy of the single-stage high frequency isolation photovoltaic grid-connected inverter are verified through experiments.

关键词

光伏发电 / 最大功率点跟踪 / 逆变器 / 单级式 / 相位补偿 / 多谐振控制

Key words

PV power / maximum power point trackers / inverters / single stage / phase compensation / multi-resonant control

引用本文

导出引用
朱文杰, 曹晓雅, 李学武, 李云飞, 周克亮, 周翔. 一种单级式高频隔离光伏并网逆变器及其调制方法[J]. 太阳能学报. 2024, 45(7): 474-485 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0490
Zhu Wenjie, Cao Xiaoya, Li Xuewu, Li Yunfei, Zhou Keliang, Zhou Xiang. A SINGLE STAGE HIGH FREQUENCY ISOLATED PHOTOVOLTAIC GRID-CONNECTED INVERTER AND ITS MODULATION METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 474-485 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0490
中图分类号: TM464   

参考文献

[1] KUNCHAM S K, ANNAMALAI K, SUBRAHMANYAM N.A two-stage T-type hybrid five-level transformerless inverter for PV applications[J]. IEEE transactions on power electronics, 2020, 35(9): 9510-9521.
[2] 候虚虚, 秦岭, 茅靖峰, 等. 两级式单相光伏并网逆变器输入电压PI+QPR鲁棒控制器设计[J]. 电网技术, 2017, 41(9): 2910-2918.
HOU X X, QIN L, MAO J F, et al.Design of input voltage robust PI+QPR controller for two-stage single-phase PV grid-connected inverter[J]. Power system technology, 2017, 41(9): 2910-2918.
[3] KAN S Q, RUAN X B, DANG H, et al.Second harmonic current reduction in front-end DC-DC converter for two-stage single-phase photovoltaic grid-connected inverter[J]. IEEE transactions on power electronics, 2019, 34(7): 6399-6410.
[4] 李安庆, 吴春华, 李智华, 等. 一种单相高频光伏并网逆变器的研究[J]. 太阳能学报, 2020, 41(6): 247-255.
LI A Q, WU C H, LI Z H, et al.Research on a single phase high frequency photovoltaic grid-connected inverter[J]. Acta energiae solaris sinica, 2020, 41(6): 247-255.
[5] YANG D F, ZHANG H R, LIU C, et al.Novel high-frequency isolated cascade PV inverter topology based on multibus DC collection[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 2122-2135.
[6] 茆美琴, 宋振宇, 张榴晨. 一种可提高单相光伏并网逆变器功率密度的新型功率解耦拓扑[J]. 太阳能学报, 2022, 43(6): 33-41.
MAO M Q, SONG Z Y, ZHANG L C.A novel power decoupling topology for improving power density of single-phase grid-connected PV inverter[J]. Acta energiae solaris sinica, 2022, 43(6): 33-41.
[7] GUO B, SU M, SUN Y, et al.Optimization design and control of single-stage single-phase PV inverters for MPPT improvement[J]. IEEE transactions on power electronics, 2020, 35(12): 13000-13016.
[8] SREEKANTH T, LAKSHMINARASAMMA N, MISHRA M K.A single-stage grid-connected high gain buck-boost inverter with maximum power point tracking[J]. IEEE transactions on energy conversion, 2017, 32(1): 330-339.
[9] 叶尊敬, 嵇保健, 洪峰, 等. 一种低输入电流纹波的单级式三相并网逆变器[J]. 电工技术学报, 2018, 33(10): 2303-2311.
YE Z J, JI B J, HONG F, et al.A single-stage three-phase grid-connected inverter with low input current ripple[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2303-2311.
[10] 刘颖, 秦文萍, 王磊, 等. 可减少光伏弃光量的低压配电网并网逆变器电压控制策略[J]. 太阳能学报, 2020, 41(8): 151-159.
LIU Y, QIN W P, WANG L, et al.Voltage control strategy of pv grid-connected inverter in low voltage distribution network with reduction amount of light discarded[J]. Acta energiae solaris sinica, 2020, 41(8): 151-159.
[11] 周雪松, 郭帅朝, 马幼婕, 等. 基于LADRC和准PR的三相LCL型光伏并网逆变器谐波谐振抑制策略[J]. 太阳能学报, 2023, 44(3): 465-474.
ZHOU X S, GUO S C, MA Y J, et al.Harmonic resonance suppression strategy of three-phase LCL photovoltaic grid-connected inverter based on LADRC and quasi PR[J]. Acta energiae solaris sinica, 2023, 44(3): 465-474.
[12] 肖华锋. 非隔离型光伏并网逆变器软开关技术[J]. 中国电机工程学报, 2019, 39(3): 812-821, 960.
XIAO H F.Soft-switching techniques for transformerless photovoltaic grid-connected inverters[J]. Proceedings of the CSEE, 2019, 39(3): 812-821, 960.
[13] 熊振中, 庄圣贤, 代云中, 等. 非隔离型单相级联双降压式光伏并网逆变器及其漏电流分析[J]. 太阳能学报, 2021, 42(4): 215-222.
XIONG Z Z, ZHUANG S X, DAI Y Z, et al.Transformerless single-phase cascaded dual-buck photovoltaic grid-connected inverter and its leakage current analysis[J]. Acta energiae solaris sinica, 2021, 42(4): 215-222.
[14] 李山, 司文旭, 陈艳, 等. 基于准PR控制的隔离型准Z源单相光伏并网逆变器研究[J]. 太阳能学报, 2018, 39(11): 3081-3089.
LI S, SI W X, CHEN Y, et al.Research on isolated quasi-Z-source single phase photovoltaic grid connected inverter based on PR control[J]. Acta energiae solaris sinica, 2018, 39(11): 3081-3089.
[15] 梁晖, 罗浩, 聂志强, 等. 高频隔离型光伏并网逆变器拓扑及其控制策略[J]. 电网技术, 2016, 40(8): 2302-2308.
LIANG H, LUO H, NIE Z Q, et al.Topology and control strategy of high frequency isolated PV grid-connected inverter[J]. Power system technology, 2016, 40(8): 2302-2308.
[16] OLOWU T O, JAFARI H, MOGHADDAMI M, et al.Multiphysics and multiobjective design optimization of high-frequency transformers for solid-state transformer applications[J]. IEEE transactions on industry applications, 2021, 57(1): 1014-1023.
[17] GUO S L, SU J H, LAI J D, et al.Analysis and design of a wide-range soft-switching high-efficiency high-frequency-link inverter with dual-phase-shift modulation[J]. IEEE transactions on power electronics, 2018, 33(9): 7805-7820.
[18] MAZUMDER S K, RATHORE A K.Primary-side-converter-assisted soft-switching scheme for an AC/AC converter in a cycloconverter-type high-frequency-link inverter[J]. IEEE transactions on industrial electronics, 2011, 58(9): 4161-4166.
[19] 钟曙, 许建平, 陈学健, 等. 基于有源钳位的高效单级开关功率放大器[J]. 中国电机工程学报, 2017, 37(6): 1808-1819.
ZHONG S, XU J P, CHEN X J, et al.High efficiency single stage switching audio amplifier based on active clamp[J]. Proceedings of the CSEE, 2017, 37(6): 1808-1819.
[20] ZHONG S, XU J P, ZHOU X.High-efficiency zero-voltage switching single-stage switching amplifier with half-bridge active clamping circuit[J]. IEEE transactions on industrial electronics, 2018, 65(11): 8574-8584.
[21] ZHU W J, ZHOU K L, CHENG M.A bidirectional high-frequency-link single-phase inverter: modulation, modeling, and control[J]. IEEE transactions on power electronics, 2014, 29(8): 4049-4057.
[22] ZHU W J, ZHOU K L, CHENG M, et al.A high-frequency-link single-phase PWM rectifier[J]. IEEE transactions on industrial electronics, 2015, 62(1): 289-298.
[23] VERMA D, NEMA S, SHANDILYA A M, et al.Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems[J]. Renewable and sustainable energy reviews, 2016, 54: 1018-1034.
[24] YANG Y H, ZHOU K L, CHENG M.Phase compensation resonant controller for PWM converters[J]. IEEE transactions on industrial informatics, 2013, 9(2): 957-964.

基金

国家自然科学基金(61673305); 山东省高等学校科研计划(J15LN37); 山东省自然科学基金(ZR2023ME138); 台达电力电子科教发展计划

PDF(4279 KB)

Accesses

Citation

Detail

段落导航
相关文章

/