Based on the full operating condition model of the ejector, constructs a simulation model of a solar ejector refrigeration system. The change of solar radiation not only cause temperature deviation but also affect condensing and evaporating temperature. Assuming that the inlet parameters of the water on the heat exchange side of the evaporator and condenser are unchanged, the operating performance of a solar jet refrigeration system with the variation of solar radiation are studied, and multi-ejector parallel optimization is adopted. The results show that when solar radiation is at the design value, the performance coefficient and cooling capacity of the refrigeration system reach their maximum values. As solar radiation increases or decreases, the performance coefficient and cooling capacity of the refrigeration system will decrease. During the summer, the average cooling capacity of the system with three-ejector parallel and the days meeting the cooling demand are both increased by about 21% compared to the single-nozzle system.
Wang Fei, Zhang Hanyu, Meng Shengqiang, Wang Leihao.
RESEARCH ON CHARACTERISTICS OF SOLAR EJECTOR REFRIGERATION SYSTEM AND OPTIMIZATION OF MULTI-EJECTOR[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 143-149 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0492
中图分类号:
TK513.5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BRAIMAKIS K.Solar ejector cooling systems: a review[J].Renewable energy, 2021, 164: 566-602. [2] 郑慧凡, 黄晨茜, 范晓伟, 等. 太阳能喷射-压缩复合蓄冷系统的实验研究[J]. 太阳能学报, 2020, 41(5): 9-14. ZHENG H F, HUANG C X, FAN X W, et al.Experimental study of acombined solar ejection-compression and ice-storage system[J]. Acta energiae solaris sinica, 2020, 41(5): 9-14. [3] 白得坡, 王林, 谈莹莹, 等. 改进型太阳能喷射制冷系统变工况特性[J]. 化工学报, 2016, 67(S2): 362-369. BAI D P, WANG L, TAN Y Y, et al.Off-design performance of modified solar jet refrigeration system[J]. CIESC journal, 2016, 67(S2): 362-369. [4] 郑慧凡, 李志强, 陈银龙, 等. 基于太阳辐射值的喷射制冷系统动态性能分析[J]. 热科学与技术, 2016, 15(2): 109-113. ZHENG H F, LI Z Q, CHEN Y L, et al.Dynamic analysis of ejector refrigerant system based on solar radiation[J]. Journal of thermal science and technology, 2016, 15(2): 109-113. [5] 郑慧凡, 范晓伟, 王方, 等. 热源侧水温水量对太阳能喷射制冷系统的影响分析[J]. 太阳能学报, 2016, 37(2): 447-453. ZHENG H F, FAN X W, WANG F, et al.Effect of water temperature and water flow quantity in heat source side on solar ejector refrigeration system[J]. Acta energiae solaris sinica, 2016, 37(2): 447-453. [6] 张峰峰, 田琦, 李风雷, 等. 蓄热型太阳能喷射制冷系统供冷性能分析及优化[J]. 华侨大学学报(自然科学版), 2017, 38(4): 525-530. ZHANG F F, TIAN Q, LI F L, et al.Analysis and optimization on cooling performance of solar ejector refrigeration system with heat storage[J]. Journal of Huaqiao University (natural science), 2017, 38(4): 525-530. [7] SIDER I, SIDER K.Evaluation of vapor jet refrigeration cycle driven by solar thermal energy for air conditioning applications: case study[J]. Advances in science, technology and engineering systems journal, 2020, 5(2): 646-652. [8] CHEN Z Z, JIN X, SHIMIZU A, et al.Effects of the nozzle configuration on solar-powered variable geometry ejectors[J]. Solar energy, 2017, 150: 275-286. [9] GALINDO J, DOLZ V, TISEIRA A, et al.Numerical assessment of the dynamic behavior of a solar-driven jet-ejector refrigeration system equipped with an adjustable jet-ejector[J]. International journal of refrigeration, 2021, 121: 168-182. [10] 范晓伟, 刘鸿超, 郑慧凡, 等. 基于R134a的太阳能多喷射器制冷系统的方案设计[J]. 中原工学院学报, 2015, 26(1): 67-70. FAN X W, LIU H C, ZHENG H F, et al.Scheme comparison of solar energy-driven multi-ejectors refrigeration system using R134a as refrigerant[J]. Journal of Zhongyuan University of Technology, 2015, 26(1): 67-70. [11] NGUYEN D L, WINTER E R F, GREINER M. Sonic velocity in two-phase systems[J]. International journal of multiphase flow, 1981, 7(3): 311-320. [12] HUANG B J, CHANG J M, WANG C P, et al.A 1-D analysis of ejector performance[J]. International journal of refrigeration, 1999, 22(5): 354-364. [13] CHEN W X, SHI C Y, ZHANG S P, et al.Theoretical analysis of ejector refrigeration system performance under overall modes[J]. Applied energy, 2017, 185: 2074-2084. [14] LI F L, LI R R, LI X C, et al.Experimental investigation on a R134a ejector refrigeration system under overall modes[J]. Applied thermal engineering, 2018, 137: 784-791. [15] ZHANG J, DESIDERI A, KÆRN M R, et al. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units[J]. International journal of heat and mass transfer, 2017, 108: 1787-1801. [16] LONGO G A, MANCIN S, RIGHETTI G, et al.Saturated vapour condensation of R134a inside a 4?mm ID horizontal smooth tube: comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E)[J]. International journal of heat and mass transfer, 2019, 133: 461-473. [17] MARTIN H.A theoretical approach to predict the performance of chevron-type plate heat exchangers[J]. Chemical engineering and processing: process intensification, 1996, 35(4): 301-310. [18] YAN Y Y, LIN T F.Evaporation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger[J]. Journal of heat transfer, 1999, 121(1): 118-127. [19] HUANG J C, SHEER T J, BAILEY-MCEWAN M.Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators[J]. International journal of refrigeration, 2012, 35(2): 325-335. [20] YAN Y Y, LIO H C, LIN T F.Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. International journal of heat and mass transfer, 1999, 42(6): 993-1006. [21] HUANG X N, WANG Q L, YANG H L, et al.Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector[J]. Renewable energy, 2019, 138: 999-1009. [22] 汪汉众, 李风雷, 田琦, 等. 设置多喷射器的太阳能喷射制冷系统的性能及优化研究[J]. 太原理工大学学报, 2016, 47(6): 728-733. WANG H Z, LI F L, TIAN Q, et al.Performance and optimization study of solar ejector refrigeration system with multiple-ejectors[J]. Journal of Taiyuan University of Technology, 2016, 47(6): 728-733.