具有“小惯量,弱阻尼”典型特性的新能源并网后,当系统受到扰动时交流母线的频率会出现剧烈波动现象,存在恶化电网的频率稳定运行的潜在威胁。为此,提出一种改进的虚拟同步机(VSG)参数自适应控制策略。首先,控制逆变器按VSG方式运行并使虚拟惯量和阻尼参数在运行过程中同时关联VSG输出角频率的偏差量和变化率,以达到平抑频率波动的目的;然后进一步对逆变器进行自适应优化控制,用功率偏差量代替原控制环节中的角频率导数项,避免自适应控制中的求导运算对系统造成不必要的噪声干扰,简化控制环节的同时也改善了频率的动态调节波形;最后,通过仿真算例证明了该文所提自适应控制策略的正确性,并验证了该文策略对扰动下系统有功功率及频率波动抑制的有效性。
Abstract
After the integration of new energy sources with typical characteristics of "small inertia and weak damping" into power grid, the active power of AC bus will experience severe fluctuations when the power system is disturbed, leading a potential threat to the frequency stability of power grid. Therefore, an improved parameter adaptive control strategy based on virtual synchronous generator (VSG) is proposed in this paper. Firstly, controlling the inverter to operate in VSG mode and making the virtual inertia and damping parameters associate with the deviation and rate of change of VSG output angular frequency during operation, in order to achieve the aim of smoothing frequency fluctuations. Then, in order to avoid unnecessary noise interference caused by the derivative operation in adaptive control upon the system, further adaptive optimization control is carried out on the inverter, replacing angular frequency derivative term in the original control link with power deviation, as simplify the control link, and improve the dynamic regulation waveform of grid frequency. Finally, the correctness of the proposed adaptive control strategy was proved through simulation examples, and the effectiveness of the presented strategy in suppressing active power and frequency fluctuations under disturbances was verified.
关键词
并网逆变器 /
自适应控制系统 /
虚拟同步机 /
虚拟惯性和阻尼
Key words
grid-connected inverters /
adaptive control systems /
virtual synchronous generator /
virtual inertia and damping
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵恩盛, 韩杨, 周思宇, 等. 微电网惯量与阻尼模拟技术综述及展望[J]. 中国电机工程学报, 2022, 42(4): 1413-1427.
ZHAO E S, HAN Y, ZHOU S Y, et al.Review and prospect of inertia and damping simulation technologies of microgrids[J]. Proceedings of the CSEE, 2022, 42(4): 1413-1427.
[2] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
XIE X R, HE J B, MAO H Y, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[3] 殷桂梁, 董浩, 代亚超, 等. 光伏微网中虚拟同步发电机参数自适应控制策略[J]. 电网技术, 2020, 44(1): 192-199.
YIN G L, DONG H, DAI Y C, et al.Adaptive control strategy of VSG parameters in photovoltaic microgrid[J]. Power system technology, 2020, 44(1): 192-199.
[4] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[5] 谷瑞政. 风光储微网的逆变并网控制及研究[D]. 天津: 河北工业大学, 2019.
GU R Z.Research on inverter and grid-connected control of wind/PV/battery microgrid[D]. Tianjin: Hebei University of Technology, 2019.
[6] 毛福斌, 张兴, 刘芳, 等. 基于虚拟阻尼补偿的改进型VSG控制策略研究[J]. 电力电子技术, 2016, 50(9): 75-78.
MAO F B, ZHANG X, LIU F, et al.Research on improved VSG control strategy based on virtual damping compensation[J]. Power electronics, 2016, 50(9): 75-78.
[7] 任海鹏, 陈琦, 张亮亮, 等. 虚拟同步发电机参数自适应调节[J]. 控制理论与应用, 2020, 37(12): 2571-2580.
REN H P, CHEN Q, ZHANG L L, et al.Parameter adaptive strategy for virtual synchronous generator control[J]. Control theory & applications, 2020, 37(12): 2571-2580.
[8] 缪惠宇, 杨赟, 梅飞, 等. 一种虚拟同步机运行模式平滑切换控制策略[J]. 太阳能学报, 2020, 41(9): 121-128.
MIAO H Y, YANG Y, MEI F, et al.A seamless mode switching control strategy in virtual synchronous generator[J]. Acta energiae solaris sinica, 2020, 41(9): 121-128.
[9] 刘辉, 孙大卫, 宋鹏, 等. 电压环对光伏虚拟同步机系统稳定性的影响[J]. 太阳能学报, 2021, 42(3): 311-318.
LIU H, SUN D W, SONG P, et al.Influence of voltage loop on stability of photovoltaic virtual synchronous generators[J]. Acta energiae solaris sinica, 2021, 42(3): 311-318.
[10] 魏星, 朱信舜, 葛健, 等. 级联型电力电子变压器并联运行的改进下垂控制策略[J]. 高电压技术, 2021, 47(4): 1274-1282.
WEI X, ZHU X S, GE J, et al.Improved droop control strategy for parallel operation of cascaded power electronic transformers[J]. High voltage engineering, 2021, 47(4): 1274-1282.
[11] 赵铁英, 高宁, 杨杰, 等. 基于PI控制器有源阻尼的并网逆变器自适应改进策略[J]. 太阳能学报, 2023, 44(5): 152-161.
ZHAO T Y, GAO N, YANG J, et al.Adaptive improvement strategy for grid-connected inverter based on active damping of PI controllers[J]. Acta energiae solaris sinica, 2023, 44(5): 152-161.
[12] 尚磊, 胡家兵, 袁小明, 等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报, 2017, 37(2): 403-412.
SHANG L, HU J B, YUAN X M, et al.Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37(2): 403-412.
[13] 茆美琴, 丁勇, 胡健, 等. 含多光储VSG单元孤岛微网参数自适应功率协调与频率优化控制[J]. 电源学报, 2020, 18(6): 20-32.
MAO M Q, DING Y, HU J, et al.Parameter adaptive power coordination and frequency optimization of islanded microgrid with PV/Battery VSG units[J]. Journal of power supply, 2020, 18(6): 20-32.
[14] 于晶荣, 孙文, 于佳琪, 等. 基于惯性自适应的并网逆变器虚拟同步发电机控制[J]. 电力系统保护与控制, 2022, 50(4): 137-144.
YU J R, SUN W, YU J Q, et al.Virtual synchronous generator control of a grid-connected inverter based on adaptive inertia[J]. Power system protection and control, 2022, 50(4): 137-144.
[15] 王二永, 王帅. 基于自适应虚拟电阻的低压微电网下垂控制策略[J]. 电力系统保护与控制, 2020, 48(2): 144-149.
WANG E Y, WANG S.Low voltage microgrid droop control strategy based on adaptive virtual resistance[J]. Power system protection and control, 2020, 48(2): 144-149.
[16] 杨赟, 梅飞, 张宸宇, 等. 虚拟同步发电机转动惯量和阻尼系数协同自适应控制策略[J]. 电力自动化设备, 2019, 39(3): 125-131.
YANG Y, MEI F, ZHANG C Y, et al.Coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator[J]. Electric power automation equipment, 2019, 39(3): 125-131.
[17] ZHANG Y, SUN Q Y, ZHOU J G, et al.Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement[J]. IEEE transactions on energy conversion, 2021, 36(1): 95-110.
[18] BARTOLINI A, CARDUCCI F, MUÑOZ C B, et al. Energy storage and multi energy systems in local energy communities with high renewable energy penetration[J]. Renewable energy, 2020, 159: 595-609.
基金
国家自然科学基金(51777176); 云南电网公司科技项目计划(YNKJXM20220055)