基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测

姜建国, 杨效岩, 毕洪波

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 462-473.

PDF(2660 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2660 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 462-473. DOI: 10.19912/j.0254-0096.tynxb.2023-0497

基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测

  • 姜建国, 杨效岩, 毕洪波
作者信息 +

PHOTOVOLTAIC POWER FORECASTING METHOD BASED ON VMD-FE-CNN-BiLSTM

  • Jiang Jianguo, Yang Xiaoyan, Bi Hongbo
Author information +
文章历史 +

摘要

为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声干扰对预测模型的影响,通过FE对每个子序列进行重组,使用一维CNN的局部连接及权值共享提取不同分量的特征,将CNN输出的特征融合并输入到BiLSTM模型中;利用BiLSTM模型建立历史数据之间的时间特征关系,得到光伏发电功率预测结果。与BiLSTM、CNN-BiLSTM、EEMD-CNN-BiLSTM、VMD-CNN-BiLSTM这4种模型进行比较,该文提出的VMD-FE-CNN-BiLSTM模型在光伏发电功率预测中具有较高的精确度和稳定性,满足光伏发电短期预测的要求。

Abstract

In order to improve the prediction accuracy of PV power, a hybrid PV power prediction model based on variational mode decomposition, fuzzy entropy, convolution neural network and bidirectional long short-term memory network: VMD-FE-CNN-BiLSTM is proposed in this paper. In view of the randomness and strong fluctuation of photovoltaic power generation, VMD is used to decompose the original photovoltaic sequence data into multiple sub-sequences, so as to reduce the influence of random fluctuation components and noise interference on the prediction model. Fuzzy entropy (FE) is used to reorganize each sub-sequence, and the features and trends of different components are extracted by using local connection and weight sharing of one-dimensional CNN, and the features output by CNN are fused and input into BiLSTM model; BiLSTM model is used to establish the time characteristic relationship between historical data, and the prediction results of photovoltaic power generation are obtained. Simulation and experimental results show that compared with BiLSTM, CNN-BiLSTM, EEMD-CNN-BiLSTM and VMD-CNN-BiLSTM, the proposed VMD-FE-CNN-BiLSTM model has higher accuracy and stability in PV power prediction, and meets the requirements of short-term PV power prediction.

关键词

变分模态分解 / 卷积神经网络 / 特征提取 / 模糊熵 / 光伏发电功率 / 预测 / 双向长短期记忆网络

Key words

variational mode decomposition / convolutional neural networks / feature selection / fuzzy entropy / photovoltaic power generation / forecasting / bidirectional long short-term memory network

引用本文

导出引用
姜建国, 杨效岩, 毕洪波. 基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 太阳能学报. 2024, 45(7): 462-473 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0497
Jiang Jianguo, Yang Xiaoyan, Bi Hongbo. PHOTOVOLTAIC POWER FORECASTING METHOD BASED ON VMD-FE-CNN-BiLSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 462-473 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0497
中图分类号: TM615   

参考文献

[1] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[2] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388.
WANG K Y, DU H D, JIA R, et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High voltage engineering, 2022, 48(11): 4372-4388.
[3] ZHANG M, ZHEN Z, LIU N, et al.Optimal graph structure based short-term solar PV power forecasting method considering surrounding spatio-temporal correlations[J]. IEEE transactions on industry applications, 2023, 59(1): 345-357.
[4] 林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47(9): 79-87.
LIN F, ZHANG Y, DONG Q, et al.Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of electric power systems, 2023, 47(9): 79-87.
[5] 俞娜燕, 李向超, 费科, 等. 基于SVR-UKF的光伏电站功率预测[J]. 自动化与仪器仪表, 2020(4): 73-77.
YU N Y, LI X C, FEI K, et al.Power prediction of photovoltaic power station based on support vector regression and unscented Kalman filter[J]. Automation & instrumentation, 2020(4): 73-77.
[6] KHANDAKAR A, CHOWDHURY M E H, KHODA KAZI M, et al. Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar[J]. Energies, 2019, 12(14): 2782.
[7] 武小梅, 张琦, 田明正. 基于VMD-SE和优化支持向量机的光伏预测方法[J]. 电力科学与工程, 2017, 33(9): 29-36.
WU X M, ZHANG Q, TIAN M Z.Photovoltaic prediction method based on VMD-SE and optimized support vector machine[J]. Electric power science and engineering, 2017, 33(9): 29-36.
[8] 李斌, 张一凡, 颜世烨, 等. 基于改进极限学习机ELM的光伏发电预测方法研究[J]. 热能动力工程, 2022, 37(10): 207-214.
LI B, ZHANG Y F, YAN S Y, et al.Research on photovoltaic power generation prediction method based on improved extreme learning machine(ELM)[J]. Journal of engineering for thermal energy and power, 2022, 37(10): 207-214.
[9] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[10] 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45(12): 4721-4728.
MENG A B, XU X C, CHEN J M, et al.Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power system technology, 2021, 45(12): 4721-4728.
[11] 王琦, 季顺祥, 钱子伟, 等. 基于熵理论和改进ELM的光伏发电功率预测[J]. 太阳能学报, 2020, 41(10): 151-158.
WANG Q, JI S X, QIAN Z W, et al.Photovoltaic power prediction based on entropy theory and improved ELM[J]. Acta energiae solaris sinica, 2020, 41(10): 151-158.
[12] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318.
YU X Y, ZHAO Y M, YANG N N, et al.Photovoltaic power generation forecasting based on VMD-SE-LSSVM and iterative error correction[J]. Acta energiae solaris sinica, 2020, 41(2): 310-318.
[13] ZHANG J L, LIU Z Y, CHEN T.Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric power systems research, 2023, 216: 109035.
[14] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[15] 陈瑶, 陈晓宁. 基于自适应Kmeans和LSTM的短期光伏发电预测[J]. 电测与仪表, 2023, 60(7): 94-99.
CHEN Y, CHEN X N.Prediction of short-term photovoltaic power generation based on adaptive K-means and LSTM[J]. Electrical measurement & instrumentation, 2023, 60(7): 94-99.
[16] 谢小瑜, 周俊煌, 张勇军, 等. 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45(8): 175-184.
XIE X Y, ZHOU J H, ZHANG Y J, et al.W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J]. Automation of electric power systems, 2021, 45(8): 175-184.
[17] 杨丽薇, 高晓清, 蒋俊霞, 等. 基于小波变换与神经网络的光伏电站短期功率预测[J]. 太阳能学报, 2020, 41(7): 152-157.
YANG L W, GAO X Q, JIANG J X, et al.Short-term photovoltaic output power prediction based on wavelet transform and neural network[J]. Acta energiae solaris sinica, 2020, 41(7): 152-157.
[18] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[19] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
YANG J X, ZHANG S, LIU J C, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short term memory with dual-stage attention mechanism[J]. Automation of electric power systems, 2021, 45(3): 174-182.
[20] 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9): 3463-3476.
BI G H, ZHAO X, CHEN C P, et al.Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J]. Power system technology, 2022, 46(9): 3463-3476.

基金

黑龙江省自然科学基金(LH2022F005)

PDF(2660 KB)

Accesses

Citation

Detail

段落导航
相关文章

/