正X机身四旋翼太阳能无人机结构设计

刘宇凡, 关鹏, 马骏, 范文艳, 徐博铭

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 295-303.

PDF(4013 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4013 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 295-303. DOI: 10.19912/j.0254-0096.tynxb.2023-0500

正X机身四旋翼太阳能无人机结构设计

  • 刘宇凡, 关鹏, 马骏, 范文艳, 徐博铭
作者信息 +

STRUCTURAL DESIGN OF FOUR-ROTOR UNMANNED AERIAL VEHICLE WITH POSITIVE X-SHAPED BODY

  • Liu Yufan, Guan Peng, Ma Jun, Fan Wenyan, Xu Boming
Author information +
文章历史 +

摘要

设计了一款正X机身的四旋翼复合材料太阳能无人机。基于流固耦合方法分别分析该型无人机各组件的气动特性、强度特性和失稳特性,并结合3D-DIC方法开展碳纤维杆件结构静力学试验。结果表明:搭载光伏组件可有效提升四旋翼无人机的稳定悬停时间;在额定工况下,机身所受载荷不会随着飞行角度发生较大变化;在垂直飞行时,其载荷集中在中心区域;通过屈曲分析得到无人机的最大爬升速度为4 m/s,此时,泡沫板、主梁和太阳电池均满足强度要求;仿真结果与静力学试验结果的相对误差为15%,可满足工程设计的要求。

Abstract

A four-rotor composite solar powered unmanned aerial vehicle (UAV) with a positive X-shaped body was designed. The aerodynamic characteristics, strength characteristics, and instability characteristics of each component of the UAV were analyzed using fluid-structure coupling method, and static tests of the carbon fiber rod were conducted using non-contact measurement method. The results show that carrying solar cells can effectively increase the stable hovering time of the UAV. Under the rated conditions, the load on the body does not change significantly with the flight angle, and when flying vertically, the load is concentrated in the central region of the UAV. The maximum climbing speed of the UAV is 4 m/s which is obtained through buckling analysis, and at this speed, the foam board, main beam, and solar cells all meet the strength requirements. The relative error between the simulation results and the static test results is 15%, which can meet the requirements of engineering design.

关键词

太阳能 / 无人机 / 碳纤维 / 流固耦合 / 结构强度 / 非接触测量

Key words

solar energy / UAV / carbon fiber / fluid-structure coupling / structural strength / non-contact measurement

引用本文

导出引用
刘宇凡, 关鹏, 马骏, 范文艳, 徐博铭. 正X机身四旋翼太阳能无人机结构设计[J]. 太阳能学报. 2024, 45(8): 295-303 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0500
Liu Yufan, Guan Peng, Ma Jun, Fan Wenyan, Xu Boming. STRUCTURAL DESIGN OF FOUR-ROTOR UNMANNED AERIAL VEHICLE WITH POSITIVE X-SHAPED BODY[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 295-303 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0500
中图分类号: V272   

参考文献

[1] 黄斌, 翟佳辉. 小型四旋翼无人机在小面积测绘工程中的运用优势分析[J]. 科技创新与应用, 2021, 11(26): 129-131,136.
HUANG B, ZHAI J H.Analysis of the advantages of small quadrotor UAV in small area surveying and mapping engineering[J]. Science, technology and innovation, 2021, 11(26): 129-131,136.
[2] JARRAH K, ALALI Y, LALKO A, et al.Flight time optimization and modeling of a hybrid gasoline-electric multirotor drone: an experimental study[J]. Aerospace, 2022, 9(12): 799.
[3] 申良, 刘洲洲. 太阳能四旋翼无人飞行器设计与实现[J]. 自动化与仪器仪表, 2017(3): 51-54.
SHEN L, LIU Z Z.Design and implementation of solar quadrotor unmanned aerial vehicle[J]. Automation & instrumentation, 2017(3): 51-54.
[4] 徐伟诚, 陈凯, 张铭, 等. 基于太阳能的植保无人机续航提升方案[J]. 中国农业科技导报, 2018, 20(11): 62-68.
XU W C, CHEN K, ZHANG M, et al.Life lifting scheme for plant protection UAV based on solar[J]. Journal of agricultural science and technology, 2018, 20(11): 62-68.
[5] SHEN B, LIU H J, LYU S L, et al.Acid aging of CFRP composite materials for solar UAV structure[J]. International journal of aerospace engineering, 2021, 2021: 1664847.
[6] JIANG K Y, XIE R H, YUN H F.Lightweight drill pipe based on composite carbon fiber material[J]. Journal of physics: conference series, 2020, 1549(3): 032113.
[7] 冯琨程, 高九州. 某型系留无人机复合材料机体结构优化设计与分析[J]. 玻璃钢(复合材料), 2018(10): 56-61.
FENG K C, GAO J Z.Optimization design and analysis of composite airframe of a certain tethered hovering unmanned aerial vehicle[J]. Fiberglass (composite materials), 2018(10): 56-61.
[8] ANGELOSANTI M, DEBETWAR S, CURRÁ E, et al.3D-DIC analysis for BIM-oriented SHM of a lab-scale aluminium frame structure[J]. Journal of physics: conference series, 2021, 2041(1): 012009.
[9] 刘云平, 李先影, 王田苗, 等. 提高四旋翼无人机起飞/着陆的运动稳定性的研究[J]. 高技术通讯, 2015(102): 927-934.
LIU Y P, LI X Y, WANG T M, et al.Research on improving of the dynamic stability of quadrotor unmanned aerial vehicles during take-off and landing[J]. High technology letters, 2015(102): 927-934.
[10] 阮永井, 王琦, 邹森, 等. 水空两栖太阳能四旋翼气动特性研究[J]. 航空工程进展, 2019, 10(5): 728-734.
RUAN Y J, WANG Q, ZOU S, et al.Research on aerodynamic characteristics of water-air amphibious solar four-rotor[J]. Advances in aeronautical science and engineering, 2019, 10(5): 728-734.
[11] 戴训华,全权. 飞思实验室[EB/OL]. https://flyeval.com/.
DAI X H,QUAN Q.FlyEval laboratory[EB/OL]. https://flyeval.com/.
[12] 胡金硕, 黄健哲. 共轴双旋翼动力学建模与验证[J]. 上海交通大学学报, 2022, 56(3): 395-402.
HU J S, HUANG J Z.Dynamics modeling and validation of coaxial lifting rotors[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 395-402.
[13] 关鹏, 张家瑞, 朱宸, 等. 基于正交试验设计的双玻光伏组件仿真优化研究[J]. 太阳能学报, 2023, 44(4): 432-438.
GUAN P, ZHANG J R, ZHU C, et al.Study on simulation and optimization of double glass photovoltaic components based on orthogonal experimental design[J]. Acta energiae solaris sinica, 2023, 44(4): 432-438.
[14] 赵明智, 冯绍东, 段佩瑶, 等. 雾霾对光伏组件输出特性的影响研究[J]. 太阳能学报, 2023, 44(6): 220-226.
ZHAO M Z, FENG S D, DUAN P Y, et al.Study on fluence of haze on output characteristics of photovoltaic modules[J]. Acta energiae solaris sinica, 2023, 44(6): 220-226.
[15] 高鸿渐. 微型碳纤维四旋翼无人机结构设计与优化[D]. 广汉: 中国民用航空飞行学院, 2018.
GAO H J.Structural design and optimization of miniature carbon fiber four-rotor UAV[D]. Guanghan: Civilaviation Flight University of China, 2018.
[16] 代彬, 陈章淼, 周维. 基于Realizable k-epsilon模型的水闸下游水流数值模拟[J]. 水利与建筑工程学报, 2018, 16(4): 176-180.
DAI B, CHEN Z M, ZHOU W.Numerical simulation of flow field downstream of a submerged sluice gate based on the realizable k-epsilon model[J]. Journal of water resources and architectural engineering, 2018, 16(4): 176-180.
[17] 刘峰, 闫清云, 王卓煜. 全复合材料太阳能无人机结构设计与分析[J]. 复合材料科学与工程, 2022(4): 32-39.
LIU F, YAN Q Y, WANG Z Y.Structural design and analysis of composite solar-powered unmanned aerial vehicle[J]. Journal of composite materials science and engineering, 2022(4): 32-39.
[18] 王萌, 王鹏飞, 李丽丽, 等. 基于ANSYS ACP模块的复合材料耐压壳体设计[J]. 高科技纤维与应用, 2022, 47(4): 16-22.
WANG M, WANG P F, LI L L, et al.Design of composite pressure hull based on ANSYS ACP module[J]. Advanced textiles and applications, 2022, 47(4): 16-22.
[19] 程文, 曹岩. 无人机结构复合材料在海洋环境下的强度退化研究[J]. 西安工业大学学报, 2022, 44(3): 247-252.
CHENG W, CAO Y.Research on strength degradation of UAV structural composites material in marine environment[J]. Journal of Xi’an Technological University, 2022, 44(3): 247-252.
[20] KULTERBAYEV K P.Determination of eigenvalues in problems of loss of stability of compressed rods (part Ⅱ)[J]. IOP conference series: earth and environmental science, 2022, 988(5): 052072.
[21] 徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验[J]. 爆炸与冲击, 2016, 36(3): 400-406.
XU Z Y, YANG J, GUO L J.Study of splitting crack propagation morphology using high-speed 3D DIC[J]. Explosion and shock waves, 2016, 36(3): 400-406.
[22] 王鹏, 张苗苗, 张宁超. 碳纤维复合材料的应变测量试验方法[J]. 科学技术与工程, 2018, 18(31): 133-137.
WANG P, ZHANG M M, ZHANG N C.Testing method for strain properties carbon fiber composite material[J]. Science, technology and engineering, 2018, 18(31): 133-137.
[23] 刘峰, 喻辉, 高鸿渐, 等. 重载四旋翼无人机结构优化设计与强度计算[J]. 航空工程进展, 2018, 9(1): 99-106.
LIU F, YU H, GAO H J, et al.Design optimizationand strength analysis of a heavy-duty quadrotor UAV[J]. Advances in aeronautical science and engineering, 2018, 9(1): 99-106.

基金

国家级大学生创新创业计划(202210143016)

PDF(4013 KB)

Accesses

Citation

Detail

段落导航
相关文章

/