针对水体型太阳能跨季节储热供热系统,以太阳能集热场得热量和跨季节储热水体温度场的动态模拟为基础,在TRNSYS仿真平台中建立系统动态热经济性分析模型,实现全系统动态热性能和经济性能耦合分析。此模型是对太阳能集热场中定日镜场采光面积、跨季节储热水体体积、水体几何形状、太阳能集热场质量流量、资金内部收益率等关键参数进行敏感性分析和优化的重要工具。该研究主要分析了储热水体几何形状对系统含税热价的敏感性,得出以下结论:对于万立方米级的圆柱形储热水体,水体热损、含税热价与水体高径比呈上开口的类抛物线关系,当水体高径比为1∶2时,水体的热损低至30.74 kWh/m3,对应的含税热价低至0.470 元/kWh,与区间高点的含税热价相比低9.6%;水体深度由5 m变化至25 m过程中,水体深度为19 m时热价可低至0.482 元/kWh,与区间高点的含税热价相比低13.0%。
Abstract
Based on the dynamic simulation of the heat gain of the solar collector field and the temperature field of the water pit for solar seasonal heat storage, a dynamic thermal economy analysis model of the system is established in the TRNSYS simulation platform for the water pit for solar seasonal heat storage heating system, and the dynamic thermal performance and economic performance coupling analysis of the whole system is realized. This model is an important tool for sensitivity analysis and optimization of key parameters such as the aperture area of heliostat field, solar seasonal heating storage (SSHS) volume, geometric shape, mass flow of solar heat collection field and internal rate of return of funds. This study analyzes the sensitivity of the geometry of SSHS to the heat price including tax, and draws the following conclusions: the heat loss of the water pit is related to the heat price including tax of the system and the ratio of height to diameter of the water pit in an upward opening parabolic-like relationship for the 10000 m3 class of cylindrical water pit for solar seasonal heat storage. When the ratio of height to diameter is 1∶2, the heat loss of SSHS is low, and the corresponding tax-included heat price is 0.470 CNY/kWh, which is 9.6% lower than the higher tax-included heat price. The heat loss of SSHS and the heat price including tax first decrease and then increase with the increase of SSHS height. When the height of SSHS is 19 m, the heat price including tax is 0.482 CNY/kWh, which is 13.0% lower than higher tax-included heat price.
关键词
太阳能 /
跨季节储热 /
动态模拟 /
热经济性 /
储热水体
Key words
solar energy /
seasonal heat storage /
dynamic simulation /
techno-economy /
water pit for heat storage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 贺明飞, 王志峰, 原郭丰, 等. 水体型太阳能跨季节储热技术简介[J]. 建筑节能, 2021, 49(10): 66-70.
HE M F, WANG Z F, YUAN G F, et al.A technical introduction of water pit for long-term seasonal solar thermal energy storage[J]. Journal of building energy efficiency, 2021, 49(10): 66-70.
[2] BAI Y K, YANG M, FAN J H, et al.Influence of geometry on the thermal performance of water pit seasonal heat storages for solar district heating[J]. Building simulation, 2021, 14(3): 579-599.
[3] 白亚开. 太阳能跨季节储热水体储热性能研究[D]. 北京: 中国科学院大学, 2020.
BAI Y K.Study on thermal storage performance of solar cross-season hot water storage body[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[4] KIM M H, KIM D, HEO J, et al.Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community[J]. Energy, 2019, 187: 115916.
[5] HUANG J P, FAN J H, FURBO S, et al.Economic analysis and optimization of household solar heating technologies and systems[J]. Sustainable energy technologies and assessments, 2019, 36: 100532.
[6] 王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(4): 320-327.
WANG C L, GUO F, ZHU Y L, et al.Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta energiae solaris sinica, 2021, 42(4): 320-327.
[7] 张俊月, 郭放, 黄海龙, 等. 工业余热跨季节储热系统优化及经济性分析[J]. 太阳能学报, 2020, 41(1): 47-53.
ZHANG J Y, GUO F, HUANG H L, et al.Optimization and economic analysis of an industrial waste heat heating system with seasonal storage[J]. Acta energiae solaris sinica, 2020, 41(1): 47-53.
[8] YANG M, WANG Z F, YANG J F, et al.Thermo-economic analysis of solar heating plant with the seasonal thermal storage in Northern China[J]. Solar energy, 2022, 232: 212-231.
[9] ROSATO A, CIERVO A, CIAMPI G, et al.Energy, environmental and economic dynamic assessment of a solar hybrid heating network operating with a seasonal thermal energy storage serving an Italian small-scale residential district: influence of solar and back-up technologies[J]. Thermal science and engineering progress, 2020, 19: 100591.
[10] WANG Z F.Design of solar thermal power plants[M]. Beijing: Chemical Industry Press, 2019.
[11] LI X X, WANG Z F, LI J P, et al.Numerical and experimental study of a concentrated solar thermal receiver for a solar heating system with seasonal storage[J]. International journal of energy research, 2021, 45(5): 7588-7604.
[12] 李晓霞. 太阳能跨季节储/供热系统动态特性及运行策略研究[D]. 兰州: 兰州理工大学, 2021.
LI X X.Research on dynamic characteristic and control strategy of solar heating system with seasonal thermal energy storage[D]. Lanzhou: Lanzhou University of Technology, 2021.
[13] 中央政府网. 中华人民共和国中央人民法[EB/OL].http://www.gov.cn/test/2005-06/28/content_10577. htm.
Central Government Network.The Central People’s Law of the People’s Republic of China[EB/OL]. http://www.gov.cn/test/2005-06/28/content_10577. htm.
基金
国家自然科学基金(52293415; 52293411); 国家重点研发计划(2022YFC3802404-02)