基于整流器无功功率控制的暂态电压抑制策略

秦艳辉, 尹纯亚, 段青熙, 马星

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 86-93.

PDF(3807 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3807 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 86-93. DOI: 10.19912/j.0254-0096.tynxb.2023-0514

基于整流器无功功率控制的暂态电压抑制策略

  • 秦艳辉1,2, 尹纯亚3, 段青熙2, 马星2
作者信息 +

TRANSIENT VOLTAGE FLUCTUATION SUPPRESSION STRATEGY BASED ON RECTIFIER REACTIVE POWER CONTROL

  • Qin Yanhui1,2, Yin Chunya3, Duan Qingxi2, Ma Xing2
Author information +
文章历史 +

摘要

针对高压直流输电系统换相失败引起送端换流母线电压波动的问题,首先推导送端换流母线电压与整流侧直流电压、直流电流之间的数学关系,分析得出换相失败及恢复期间直流电压与直流电流变化不协调是引起送端换流母线电压波动的主要原因。为抑制换流母线电压波动,基于整流器无功消耗与电压间定量分析,以换流母线耐压水平为约束,确定整流器无功消耗的期望值,并结合整流器无功特性分析,确定换相失败及恢复期间直流电流指令值补偿量,提出基于整流器无功功率控制的电压波动抑制策略。最后基于PSCAD/EMTDC仿真平台验证了电压波动机理的正确性以及抑制策略的有效性。

Abstract

In response to the problem of voltage fluctuation of the converter busbar at the sending end caused by the commutation failure in the high-voltage direct current transmission system, the mathematical relationship between the voltage of the converter busbar at the sending end and the DC voltage and DC current at the rectifier side is first derived. It is concluded that the main reason for the voltage fluctuation of the converter busbar at the sending end is the uncoordinated change of the DC voltage and DC current during the commutation failure and recovery period. To suppress voltage fluctuations in the converter bus, based on quantitative analysis between the reactive power consumption of the rectifier and the voltage, the expected value of the reactive power consumption of the rectifier is determined using the converter bus withstand voltage level as a constraint. Combined with the analysis of the rectifier's reactive power characteristics, the compensation amount for the direct current command value during communication failure and recovery period is determined. A voltage fluctuation suppression strategy based on rectifier reactive power control is proposed. Finally, the correctness of and of the effectiveness of the voltage fluctuqtion suppression strategy are verified based on the PSCAD / EMTDC simulation platform.

关键词

高压直流输电 / 换相失败 / 无功功率 / 电压波动 / 整流器

Key words

high voltage direct current transmission / commutation failure / reactive power / voltage fluctuation / rectifier

引用本文

导出引用
秦艳辉, 尹纯亚, 段青熙, 马星. 基于整流器无功功率控制的暂态电压抑制策略[J]. 太阳能学报. 2024, 45(8): 86-93 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0514
Qin Yanhui, Yin Chunya, Duan Qingxi, Ma Xing. TRANSIENT VOLTAGE FLUCTUATION SUPPRESSION STRATEGY BASED ON RECTIFIER REACTIVE POWER CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 86-93 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0514
中图分类号: TK712   

参考文献

[1] 郝晓弘, 胡开伟, 裴婷婷, 等. 风电接入交直流混联电网外送消纳能力研究[J]. 太阳能学报, 2021, 42(10): 195-201.
HAO X H, HU K W, PEI T T, et al.Study on transmit capacity of wind power connected to ac/dc hybrid transmssion grid[J]. Acta energiae solaris sinica, 2021, 42(10): 195-201.
[2] 衣立东, 摆世彬, 张文朝, 等. 综合能源交直流混联外送系统暂态过电压分析与快速估算[J]. 太阳能学报, 2023, 44(6): 122-129.
YI L D, BAI S B, ZHANG W C, et al.Transient overvoltage analysis and rapid estimation of integrated energy AC-DC hybrid transmission system[J]. Acta energiae solaris sinica, 2023, 44(6): 122-129.
[3] 刘俊磊, 彭红英, 钱峰, 等. 交直流混合输电运行风险模糊云评价模型[J]. 太阳能学报, 2021, 42(6): 87-96.
LIU J L, PENG H Y, QIAN F, et al.Fuzzy cloud evaluation model for operation risk of AC/DC hybrid transmission[J]. Acta energiae solaris sinica, 2021, 42(6): 87-96.
[4] 罗煦之, 张健, 贺静波, 等. 计及暂态过电压约束的直流闭锁安控与极控协调控制研究[J]. 电网技术, 2015, 39(9): 2526-2531.
LUO X Z, ZHANG J, HE J B, et al.Coordinated control research of stability control system and pole control system under DC system block considering transient overvoltage[J]. Power system technology, 2015, 39(9): 2526-2531.
[5] 辛超山, 尹纯亚, 李凤婷, 等. 特高压直流完全闭锁后的暂态压升计算方法[J]. 电力电容器与无功补偿, 2020, 41(1): 184-190.
XIN C S, YIN C Y, LI F T, et al.Calculation method of transient voltage rise after UHVDC complete blocking[J]. Power capacitor & reactive power compensation, 2020, 41(1): 184-190.
[6] 张伟晨, 熊永新, 李程昊, 等. 基于改进VDCOL的多馈入直流系统连续换相失败抑制及协调恢复[J]. 电力系统保护与控制, 2020, 48(13): 63-72.
ZHANG W C, XIONG Y X, LI C H, et al.Continuous commutation failure suppression and coordinated recovery of multi-infeed DC system based on improved VDCOL[J]. Power system protection and control, 2020, 48(13): 63-72.
[7] 王璐, 李凤婷, 尹纯亚, 等. 考虑直流电流变化的HVDC系统不对称故障换相失败分析[J]. 电力系统保护与控制, 2021, 49(1): 17-23.
WANG L, LI F T, YIN C Y, et al.Analysis of asymmetric fault commutation failure in an HVDC system with DC current variation[J]. Power system protection and control, 2021, 49(1): 17-23.
[8] 曹生顺, 张文朝, 王蒙, 等. 大容量直流发生功率大扰动时送端风机暂态过电压快速分析方法研究[J]. 高电压技术, 2017, 43(10): 3300-3306.
CAO S S, ZHANG W C, WANG M, et al.Study on fast analysis method transient fundamental frequency overvoltage of wind turbine generators in sending system when serious power disturbances occur in large-capacity UHVDC[J]. High voltage engineering, 2017, 43(10): 3300-3306.
[9] 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10): 3112-3120.
MA J, ZHAO D W, QIAN M H, et al.Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power system technology, 2017, 41(10): 3112-3120.
[10] 屠竞哲, 张健, 刘明松, 等. 风火打捆直流外送系统直流故障引发风机脱网的问题研究[J]. 电网技术, 2015, 39(12): 3333-3338.
TU J Z, ZHANG J, LIU M S, et al.Study on wind turbine generators tripping caused by HVDC contingencies of wind-thermal-bundled HVDC transmission systems[J]. Power system technology, 2015, 39(12): 3333-3338.
[11] 屠竞哲, 张健, 刘明松, 等. 考虑风机动态特性的大扰动暂态过电压机理分析[J]. 电力系统自动化, 2020, 44(11): 197-205.
TU J Z, ZHANG J, LIU M S, et al.Mechanism analysis of transient overvoltage with large disturbance considering dynamic characteristics of wind generator[J]. Automation of electric power systems, 2020, 44(11): 197-205.
[12] 孙家豪, 王笑雪, 李光辉, 等. 换相失败引起送端电网过电压的定量计算及影响因素[J]. 电力系统及其自动化学报, 2020, 32(12): 62-68.
SUN J H, WANG X X, LI G H, et al.Quantitative calculation and influencing factors of overvoltage of sending-side system caused by commutation failure[J]. Proceedings of the CSU-EPSA, 2020, 32(12): 62-68.
[13] 常海军, 霍超, 刘福锁, 等. 提高弱送端电网暂态电压稳定水平的调相机优化配置研究[J]. 电力系统保护与控制, 2019, 47(6): 90-95.
CHANG H J, HUO C, LIU F S, et al.Research on optimal allocation method of synchronous condensers for improving transient voltage stability level of weak sending-end power grid[J]. Power system protection and control, 2019, 47(6): 90-95.
[14] 贺静波, 庄伟, 许涛, 等. 暂态过电压引起风电机组连锁脱网风险分析及对策[J]. 电网技术, 2016, 40(6): 1839-1844.
HE J B, ZHUANG W, XU T, et al.Study on cascading tripping risk of wind turbines caused by transient overvoltage and its countermeasures[J]. Power system technology, 2016, 40(6): 1839-1844.
[15] 岳涵, 邵广惠, 夏德明, 等. 考虑过电压抑制的特高压直流弱送端系统无功控制策略[J]. 电力系统自动化, 2020, 44(15): 172-179.
YUE H, SHAO G H, XIA D M, et al.Reactive power control strategy for UHVDC weak sending-end system considering overvoltage suppression[J]. Automation of electric power systems, 2020, 44(15): 172-179.
[16] 刘博, 郭春义, 赵成勇. 直流斩波器对抑制换相失败引发的弱送端电网暂态过电压的研究[J]. 电网技术, 2019, 43(10): 3578-3586.
LIU B, GUO C Y, ZHAO C Y.Research on DC chopper in suppressing transient overvoltage of weak sending terminal caused by commutation failure[J]. Power system technology, 2019, 43(10): 3578-3586.
[17] 王雅婷, 张一驰, 周勤勇, 等. 新一代大容量调相机在电网中的应用研究[J]. 电网技术, 2017, 41(1): 22-28.
WANG Y T, ZHANG Y C, ZHOU Q Y, et al.Study on application of new generation large capacity synchronous condenser in power grid[J]. Power system technology, 2017, 41(1): 22-28.
[18] 赵学明, 李永丽, 孙广宇, 等. 换相失败对含风电场的交直流混联系统送端过电压的影响[J]. 高电压技术, 2019, 45(11): 3666-3673.
ZHAO X M, LI Y L, SUN G Y, et al.Effect of commutation failure on the overvoltage on rectifier station in AC/DC hybrid power system with wind farms[J]. High voltage engineering, 2019, 45(11): 3666-3673.
[19] 林安妮, 黄永章, 林伟芳, 等. 不同动态无功补偿装置对直流系统故障引发送端暂态过电压的抑制效果对比[J]. 电力电容器与无功补偿, 2020, 41(4): 116-122.
LIN A N, HUANG Y Z, LIN W F, et al.Comparison of suppression effect of different dynamic reactive power compensation devices for transient overvoltage caused by HVDC system faults[J]. Power capacitor & reactive power compensation, 2020, 41(4): 116-122.
[20] 贾俊川, 金一丁, 赵兵, 等. 风机低电压穿越控制对系统暂态过电压的影响及优化[J]. 电网技术, 2021, 45(2): 526-533.
JIA J C, JIN Y D, ZHAO B, et al.Impact analysis and performance optimization of LVRT control of wind turbine on transient overvoltage of power system[J]. Power system technology, 2021, 45(2): 526-533.
[21] 冀肖彤. 抑制HVDC送端交流暂态过电压的控制系统优化[J]. 电网技术, 2017, 41(3): 721-728.
JI X T.Optimization of HVDC control system for mitigating AC transient overvoltage on rectifier station[J]. Power system technology, 2017, 41(3): 721-728.
[22] 屠竞哲, 张健, 曾兵, 等. 直流换相失败及恢复过程暂态无功特性及控制参数影响[J]. 高电压技术, 2017, 43(7): 2131-2139.
TU J Z, ZHANG J, ZENG B, et al.HVDC transient reactive power characteristics and impact of control system parameters during commutation failure and recovery[J]. High voltage engineering, 2017, 43(7): 2131-2139.
[23] ZHANG L D, DOFNAS L.A novel method to mitigate commutation failures in HVDC systems[C]//Proceedings of International Conference on Power System Technology. Kunming, China, 2002: 51-56.

基金

新疆维吾尔自治区自然科学基金(2022D01C363); 新疆维吾尔自治区教育厅项目(XJEDU2022P019)

PDF(3807 KB)

Accesses

Citation

Detail

段落导航
相关文章

/