针对电动汽车集群入网进行无序充电会加剧峰谷差进而造成“峰上加峰”的问题,提出一种考虑新能源消纳的电动汽车分层式有序充电控制策略。首先,基于长短时间记忆神经网络理论,建立电动汽车充电负荷预测模型;其次,建立风光发电系统的数学模型;最后,提出分层式有序充电控制策略,上层主控制系统制定电动汽车充电功率指导曲线,下层次级控制系统合理安排电动汽车充电计划,利用概率转移矩阵算法获得最佳充电控制策略。仿真结果表明,所提出的有序充电控制策略能够有效降低电网负荷峰谷差。
Abstract
Electric vehicle cluster connected to the grid for disorderly charging will increase the peak-valley difference and cause the problem of ‘peak on peak’. To solve this problem, a hierarchical control method for orderly charging of electric vehicles which considers new energy accommodation is proposed. Firstly, based on the theory of long short-term memory neural networks, the charging load forecasting model for electric vehicles is established; Secondly, the mathematical models of wind and photovoltaic power generation are established; Finally, the hierarchical orderly charging control strategy is proposed. The upper master control system formulates the electric vehicle charging power guidance curve. And the lower secondary control system reasonably arranges the electric vehicle charging plan and uses the probability transfer matrix algorithm to obtain the optimal charging control strategy. The simulation results show that the proposed orderly charging control strategy can effectively reduce the peak-valley difference of grid load.
关键词
电动汽车 /
神经网络 /
新能源 /
有序充电 /
概率转移矩阵
Key words
electric vehicle /
neural networks /
renewable energy /
orderly charging /
probability transfer matrix
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU J Z, WANG Z P, ZHANG L.Integrated vehicle-following control for four-wheel-independent-drive electric vehicles against non-ideal V2X communication[J]. IEEE transactions on vehicular technology, 2022, 71(4): 3648-3659.
[2] 李卫东, 张力兵, 齐大伟, 等. 考虑零碳排放的电-气综合能源系统日前优化调度[J]. 太阳能学报, 2023, 44(6): 145-151.
LI W D, ZHANG L B, QI D W, et al.Day-ahead optimal dispatch of electric-gas integrated energy systems considering zero-carbon emissions[J]. Acta energiae solaris sinica, 2023, 44(6): 145-151.
[3] 朱西平, 江强, 钟宇, 等. 计及前瞻风险的综合能源系统低碳经济调度优化[J]. 太阳能学报, 2023, 44(6): 113-121.
ZHU X P, JIANG Q, ZHONG Y, et al.Low-carbon economic dispatch optimization of integrated energy system considering forward-looking risks[J]. Acta energiae solaris sinica, 2023, 44(6): 113-121.
[4] 叶浩劼, 谢丽蓉, 邓佳桐, 等. 考虑碳交易机制的风-火协调低碳优化调度[J]. 太阳能学报, 2023, 44(6): 106-112.
YE H J, XIE L R, DENG J T, et al.wind-fire coordinated low-carbon optimal dispatch considering carbon trading mechanism[J]. Acta energiae solaris sinica, 2023, 44(6): 106-112.
[5] CHEN Y Y, XUE Y N, WU Y Y, et al.Orderly charging of electric vehicles considering new energy consumption and system peak-to-valley differences[C]//2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). Hangzhou, China, 2022: 1967-1971.
[6] HE Y F, VENKATESH B, GUAN L.Optimal scheduling for charging and discharging of electric vehicles[J]. IEEE transactions on smart grid, 2012, 3(3): 1095-1105.
[7] QIAN K J, ZHOU C K, ALLAN M, et al.Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE transactions on power systems, 2011, 26(2): 802-810.
[8] DENG X S, ZHANG Q, LI Y, et al.Hierarchical distributed frequency regulation strategy of electric vehicle cluster considering demand charging load optimization[C]//2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). Ji’nan, China, 2020: 959-969.
[9] NIMALSIRI N I, RATNAM E L, SMITH D B, et al.Coordinated charge and discharge scheduling of electric vehicles for load curve shaping[J]. IEEE transactions on intelligent transportation systems, 2022, 23(7): 7653-7665.
[10] 陈文哲, 孙海顺, 徐瑞林, 等. 电动汽车参与调频服务的云边融合分层调控技术研究[J]. 中国电机工程学报, 2023, 43(3): 914-927.
CHEN W Z, SUN H S, XU R L, et al.Cloud-edge collaboration based hierarchical dispatch technology for EV participating in frequency regulation service[J]. Proceedings of the CSEE, 2023, 43(3): 914-927.
[11] 赵德仁, 丁雷, 徐立华, 等. 面向新能源消纳的主动配电网电动汽车充放电功率和网络重构协调优化调度[J]. 电力系统及其自动化学报, 2019, 31(8): 94-101.
ZHAO D R, DING L, XU L H, et al.Coordinated optimal dispatching of EV charging/discharging power and network reconfiguration in active distribution network for renewable energy accommodation[J]. Proceedings of the CSU-EPSA, 2019, 31(8): 94-101.
[12] 马苗苗, 刘立成, 王鑫, 等. 风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2096-2106.
MA M M, LIU L C, WANG X, et al.Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles[J]. Journal of Jilin University(engineering and technology edition), 2022, 52(9): 2096-2106.
[13] LI Z Q, DOU Y J, XIA B Y, et al.System portfolio selection based on GRA method under hesitant fuzzy environment[J]. Journal of systems engineering and electronics, 2022, 33(1): 120-133.
[14] WANG Y, SUN F P, HAO J M, et al.Evaluation of global navigation satellite system spoofing efficacy[J]. Journal of systems engineering and electronics, 2022, 33(6): 1238-1257.
[15] MA J T, LIU H, PENG C, et al.Unauthorized broadcasting identification: a deep LSTM recurrent learning approach[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 5981-5983.
[16] MOHSIN M, RAO K V S. Estimation of Weibull distribution parameters and wind power density for wind farm site at Akal at Jaisalmer in Rajasthan[C]//2018 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). Ghaziabad, India, 2018: 1-6.
[17] LIU N, YU X H, WANG C, et al.Energy sharing management for microgrids with PV prosumers: a stackelberg game approach[J]. IEEE transaction on industrial informatics, 2017, 13(3): 1088-1098.
基金
中央高校基本科研业务费专项资金(2023JC002); 国家自然科学基金(61873091)