基于发电量最优和安全性的复杂山地风电场微观选址研究

李金缀, 姜宏超

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 486-493.

PDF(1799 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1799 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 486-493. DOI: 10.19912/j.0254-0096.tynxb.2023-0535

基于发电量最优和安全性的复杂山地风电场微观选址研究

  • 李金缀, 姜宏超
作者信息 +

MICRO SITTING STUDY IN COMPLEX MOUNTATAINOUS WIND FARM BASED ON OPTIMAL POWER GENERATION AND SECURITY

  • Li Jinzhui, Jiang Hongchao
Author information +
文章历史 +

摘要

该文以复杂山地风电场机组尾流后发电量最优为目标函数,以单个机组的发电量和安全性为个体适应度,创新性地提出一种基于尾流后发电量最优兼顾安全性的复杂山地风电场微观选址方法。经实际复杂山地风电场的应用分析发现,全场年净发电量相比于传统人工经验排布方法提升1.6%,各机组安全性识别指标均处于高风险阈值之下,降低机组运行风险。研究表明,该方法在复杂山地风电场的微观选址中具有较强的指导性和实用性,可用于实际风电场微观选址机组排布优化及安全保障。

Abstract

The interaction of wake effects and complex topography in mountainous wind farms poses challenges to power generation and escalates the risk of turbine failure. This paper proposes a novel micro-siting method designed for complex mountainous wind farms,which takes maximizing energy yield and ensuring turbine safety as the objective function. The proposed methodology takes power generation and safety performance of each turbine as the individual fitness. A case study on an actual operational wind farm reveals that the implementation of this method obtains a 1.6% increase in annual net power generation compared to conventional empirical approaches. Furthermore, the method ensures that safety identification indicators for each turbine remain beneath established high-risk thresholds, affirming the comprehensive safety status of the wind farm. The demonstrated results indicate that the method can serve as an instructive and practical tool for micro-siting optimization and risk mitigation in complex mountainous wind environments.

关键词

风电场 / 微观选址 / 遗传算法 / 山地 / 安全性 / CFD仿真 / 叶轮面

Key words

wind farm / micro sitting / genetic algorithm / mountainous / security / CFD simulation / rotor plane

引用本文

导出引用
李金缀, 姜宏超. 基于发电量最优和安全性的复杂山地风电场微观选址研究[J]. 太阳能学报. 2024, 45(8): 486-493 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0535
Li Jinzhui, Jiang Hongchao. MICRO SITTING STUDY IN COMPLEX MOUNTATAINOUS WIND FARM BASED ON OPTIMAL POWER GENERATION AND SECURITY[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 486-493 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0535
中图分类号: TM614   

参考文献

[1] 贾彦, 刘璇, 李华, 等. 考虑尾流效应对风电场机组布局的影响分析[J]. 可再生能源, 2014, 32(4): 429-435.
JIA Y, LIU X, LI H, et al.Analysis of wind farm units layout considering wake effect[J]. Renewable energy resources, 2014, 32(4): 429-435.
[2] 田琳琳, 赵宁, 武从海, 等. 复杂地形风电场的机组布局优化[J]. 南京航空航天大学学报, 2013, 45(4): 503-509.
TIAN L L, ZHAO N, WU C H, et al.Optimal positioning of wind turbines on complex wind farm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(4): 503-509.
[3] 薛飞飞, 许昌, 韩星星, 等. 基于CFD的复杂地形风电场地形改造方案研究[J]. 太阳能学报, 2017, 38(7): 1959-1965.
XUE F F, XU C, HAN X X, et al.Terrain modification research in complex terrain wind farm based on CFD[J]. Acta energiae solaris sinica, 2017, 38(7): 1959-1965.
[4] 叶超, 杨苹. 基于枚举法的地区电网接纳风电能力评估[J]. 可再生能源, 2017, 35(3): 401-410.
YE C, YANG P.Evaluation on the wind power capacity of regional power grid based on enumeration method[J]. Renewable energy resources, 2017, 35(3): 401-410.
[5] CASTRO MORA J, CALERO BARÓN J M, RIQUELME SANTOS J M, et al. An evolutive algorithm for wind farm optimal design[J]. Neurocomputing, 2007, 70(16-18): 2651-2658.
[6] GRADY S A, HUSSAINI M Y, ABDULLAH M M.Placement of wind turbines using genetic algorithms[J]. Renewable energy, 2005, 30(2): 259-270.
[7] WAN C Q, WANG J, YANG G, et al.Optimal micro-siting of wind farms by particle swarm optimization[C]//International Conference in Swarm Intelligence. Berlin, Heidelberg: Springer, 2010: 198-205.
[8] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116.
[9] ALLEN J, KING R, BARTER G.Wind farm simulation and layout optimization in complex terrain[J]. Journal of physics: conference series, 2020, 1452(1): 012066.
[10] 许昌, 杨建川, 李辰奇, 等. 复杂地形风电场微观选址优化[J]. 中国电机工程学报, 2013, 33(31): 58-64, 7.
XU C, YANG J C, LI C Q, et al.Optimization of wind farm layout in complex terrain[J]. Proceedings of the CSEE, 2013, 33(31): 58-64, 7.
[11] 许昌, 杨建川, 韩星星, 等. 基于CFD和NCPSO的复杂地形风电场微观选址优化[J]. 太阳能学报, 2015, 36(12): 2844-2851.
XU C, YANG J C, HAN X X, et al.Optimization of windfarm micrositting in complex terrain based on CFD and NCPSO[J]. Acta energiae solaris sinica, 2015, 36(12): 2844-2851.
[12] 许昌, 陈丹丹, 韩星星, 等. 复杂地形风电场一体化优化设计研究[J]. 太阳能学报, 2017, 38(12): 3368-3375.
XU C, CHEN D D, HAN X X, et al.Study of integrated optimization design of wind farm in complex terrain[J]. Acta energiae solaris sinica, 2017, 38(12): 3368-3375.
[13] 严彦, 许昌, 刘德有, 等. 基于遗传算法的风电场微观选址优化研究[J]. 太阳能学报, 2013, 34(3): 526-532.
YAN Y, XU C, LIU D Y, et al.Optimization research of wind farm micro sitting based on genetic algorithm[J]. Acta energiae solaris sinica, 2013, 34(3): 526-532.
[14] LAUNDER B E, SHARMA B I.Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in heat & mass transfer, 1974, 1: 131-137.
[15] ALINOT C, MASSON C.k-ε model for the atmospheric boundary layer under various thermal stratifications[J]. Journal of solar energy engineering, 2005, 127(4): 438-443.
[16] VAN DER LAAN M P, KELLY M C, SØRENSEN N N. A new k-epsilon model consistent with Monin-Obukhov similarity theory[J]. Wind energy, 2017, 20(3): 479-489.
[17] BREEDT H J, CRAIG K J, JOTHIPRAKASAM V D.Monin-Obukhov similarity theory and its application to wind flow modelling over complex terrain[J]. Journal of wind engineering and industrial aerodynamics, 2018, 182: 308-321.
[18] RAMECHECANDANE S, GRAVDAHL A R.Numerical investigations on wind flow over complex terrain[J]. Wind engineering, 2012, 36(3): 273-295.
[19] FENG J, SHEN W Z.Wind farm layout optimization in complex terrain: a preliminary study on a Gaussian hill[J]. Journal of physics: conference series, 2014, 524(1): 012146.
[20] HU W C, YANG Q S, CHEN H P, et al.A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm[J]. Energy, 2022, 251: 123970.
[21] WANG L Y, TAN A C C, CHOLETTE M, et al. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights[J]. Energy conversion and management, 2016, 124: 189-202.

PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/